skip to main content

PEMODELAN JUMLAH WISATAWAN DI JAWA TENGAH MENGGUNAKAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE - SEEMINGLY UNRELATED REGRESSION (GSTAR-SUR)

*Innosensia Adella  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Space-time model is a model that can explain data with spatial and time characteristics. The Generalized Space Time Autoregressive (GSTAR) model is one of the generalized space-time models from the Space Time Autoregressive (STAR) model. The GSTAR model is more flexible when dealing with areas that have heterogeneous characteristics than the STAR model. The GSTAR model models time series data in multiple regions at once. This model can then be used to model data on the number of tourists in four regions in Central Java, namely Semarang, Jepara, Magelang and Semarang district for the 2014 to 2019 period. in Central Java. On the residual model, the Lagrange Multiplier Test is carried out and it is known that there is a correlation between the residuals. The modeling was continued by using the Generalized Space Time Autoregressive – Seemingly Unrelated Regression (GSTAR-SUR) model. GSTAR-SUR is one of the more efficient models used to model GSTAR with correlated residuals. Residual through the white-noise assumption test, it is found that the appropriate model is the GSTAR-SUR(2,1) model. This model can then be used in forecasting data on the number of tourists in Semarang, Jepara, Magelang and Semarang district in the next period
Fulltext View|Download
Keywords: Tourists; Space Time; GSTAR; SUR; White-Noise

Article Metrics:

  1. Badan Pusat Statistik Indonesia. 2018. Statistik Objek Daya Tarik Wisata. Jakarta: Badan Pusat Statistik
  2. Borovkova, S.A., Lapuhaä, H.P., dan Ruchjana, B.N. 2008. Consistency and Asymptotic Normality of Least Square Estimators in Generalized STAR Models. Statistica Neerlandica Vol. 62, No. 4: Hal. 482-508
  3. Cliff, A. dan Ord, J.K. 1983. Spatial Processes: Models and Applications. London: Pion
  4. Halim, S., dan Chandra, Arif. 2011. Pemodelan Time Series Multivariat secara Automatis. Jurnal Teknik Industri Vol.13, No. 1: Hal. 19-26
  5. Makridakis. 1999. Metode dan Aplikasi Peramalan Jilid 1. Jakarta: Erlangga
  6. Pfeifer, P.E. dan Deutsch, S.J. 1980. A Three-Stage Iterative Procedure for Space-Time Modeling. Technometrics. Vol. 22 No.1: pp 35-47
  7. Prastuti, M., dan Suhartono. 2014. Model GSTAR-SUR Musiman untuk Peramalan Jumlah Wisatawan Mancanegara di Empat Lokasi Wisata di Indonesia. Tesis. Surabaya: Program Magister Jurusan Statistika FMIPA Institut Teknologi Sepuluh Nopember
  8. Wei, W. W. 2006. Time Series Analysis:Univariate and Multivatiate Methods (Second ed.). United States of America: Pearson Education,Inc
  9. Wutsqa, D.U., Suhartono, dan Sutijo, B. 2010. Generealized Space-Time Autoregressive Modeling. Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA 2010). Kuala Lumpur: Universiti Tuanku Abdul Rahman

Last update:

No citation recorded.

Last update:

No citation recorded.