skip to main content

METODE K-HARMONIC MEANS CLUSTERING DENGAN VALIDASI SILHOUETTE COEFFICIENT (Studi Kasus : Empat Faktor Utama Penyebab Stunting 34 Provinsi di Indonesia Tahun 2018)

Silvy ‘Aina Salsabila  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The k-harmonic means method is a method of using the cluster center point value, which is to determine each cluster from its center point based on the calculation of the harmonic average. The k-harmonic means determines the existence of each data point based on the membership function and weighting function by using a distance measure. in the clustering, which aims to increase the importance of data that is far from each central point. This causes the k-harmonic means to be insensitive in initialization in determining the cluster center point and significantly improves the quality of clustering compared to k-means. In determining the level of similarity, the determination of the level of similarity uses the distance measure and the distance measure used is the Euclidean distance measure. The distance measure used in cluster analysis can affect the cluster results obtained. Thus, to determine the quality of the results of the cluster analysis, validation tests were carried out using an internal criteria approach, namely silhouette coefficient. In this study, the k-harmonic means used to classify provinces in Indonesia based on the causes of stunting in 2018. The stunting in children under five in Indonesia has exceeded the limit set by WHO. In 2016-2017 there was an increase in the prevalence of stunting by 27.5% to 29.6%. The k-harmonic means method is used so that the four main factors causing stunting in every province in Indonesia can be seen and the prevention and cure of stunting can run optimally. This method is also used because the data on the four factors that cause stunting show a significant rate of change and as a measure of central tendency in 34 provincial objects in Indonesia. Four factors that cause stunting are used, namely the percentage of households that do not have access to clean drinking water, the percentage of exclusive breastfeeding, the percentage of Low Birth Weight Babies (LBW) 2,500-grams born safely and the percentage of households that do not have proper sanitation facilities. The results obtained by the cluster which is optimal at k= 3 using the Euclidean, where the silhouette coefficient = 0,3040722675 ≈ 0,3. Based on the results of the cluster analysis, it is known that in cluster one, the main factor that stands out the most is the percentage of exclusive breastfeeding. In cluster two, the main factor that stands out the most is the percentage of Low Birth Weight Babies (LBW) 2,500-grams born safely. In cluster three, the most prominent main factors are the percentage of Low Birth Weight Babies (LBW) 2,500-grams born safely and the percentage of households that do not have proper sanitation facilities with the highest average centroid among other clusters.

 

Keywords: Clustering, K-Harmonic Means, Euclidean distance, Silhouette Coefficient, Stunting

 

Fulltext View|Download
Keywords: Clustering, K-Harmonic Means, Euclidean distance, Silhouette Coefficient, Stunting

Article Metrics:

  1. Aini, F.N., Palgunadi. S., dan Anggrainingsih. R. 2014. Clustering Business Rocess Model Petri Net dengan Complete Linkage. Jurnal ITSMART Vol 3. No. 2: Hal. 47-51
  2. Badan Pusat Statistik. 2010. Statistik Kesejahteraan Rakyat Tahun 2017. Jakarta
  3. Departemen Kesehatan RI. 2008. Riset Kesehatan Dasar Tahun 2007. Jakarta
  4. Folzmiser, P. 2005. Identification of Multivariate Outliers: A Performance Study. Australian Journal of Statistics Vol 34. No. 2: Hal. 127-138
  5. Gujarati, D. 2009. Dasar-dasar Ekonometrika Jilid 2. Jakarta: Erlangga
  6. Hair, J.F., Anderson, R.E., Thatham, R.L., dan Black, W.C. 2010. Multivariate Data Analysis Seventh Edition. New Jersey: Pearson Education. Inc
  7. Hamerly, G., & Elkan, C. 2002. Alternatives to the k-means algorithm that find better Clusterings. In Proceedings of the Eleventh International Conference on Information and Knowledge Management, 600-607
  8. Han, J. dan Kamber, M. 2006. Data Mining Concepts and Techniques Second Edition. San Francisco: Elsever
  9. Johnson, R.A. dan Wichern, D.W. 2007. Applied Multivariate Scatistical Analysis Six Edition. New Jersey: Prentice Hill. Inc
  10. Kementerian Kesehatan RI. 2010. Keputusan Menteri Kesehatan Nomor 1995/Menkes/SK/XII/2010 tentang Standar Antopometri Penilaian Status Gizi Anak. Jakarta
  11. Kementerian Kesehatan RI. 2011. Riset Kesehatan Dasar Tahun 2010. Jakarta
  12. Kementerian Kesehatan RI. 2013. Peraturan Menteri Kesehatan Nomor 75 Tahun 2013 tentang Angka Kecukupan Gizi yang Dianjurkan bagi Bangsa Indonesia. Jakarta
  13. Kementerian Kesehatan RI. 2014. Peraturan Menteri Kesehatan Nomor 23 Tahun 2014 tentang Upaya Perbaikan Gizi. Jakarta
  14. Kementerian Kesehatan RI. 2014. Riset Kesehatan Dasar Tahun 2013. Jakarta
  15. Kementerian Kesehataan RI. 2016. Buku Saku Pemantauan Status Gizi Tahun 2015. Jakarta
  16. Kementerian Kesehatan RI. 2016. Peraturan Menteri Kesehatan Nomor 39 Tahun 2016 tentang Pendoman Penyelenggaraan Program Indonesia Sehat dengan Pendekatan Keluarga. Jakarta
  17. Kementerian Kesehatan RI. 2016. Peraturan Menteri Kesehatan Nomor 51 Tahun 2016 tentang Standar Produk Suplementasi Gizi. Jakarta
  18. Kementerian Kesehatan RI. 2017. Buku Saku Pemantauan Status Gizi Tahun 2016. Jakarta
  19. Kementerian Kesehatan RI. 2018. Buku Saku Pemantauan Status Gizi Tahun 2017. Jakarta
  20. Kementerian Perencanaan Pembangunan Nasional (Bappenas) dan United Nations Children’s Fund. 2017. Laporan Baseline SDG tentang Anak-Anak Indonesia. Jakarta: BAPPENAS dan UNICEF
  21. Pen, J.M., Lozano, J.A., dan Larranaga, P. 1999. An Empirical Comparison of Four Initialization Methods for The K-Means Algorithm. Pattern Recognition Letters, Vol.20, hal. 1027-1040
  22. Simamora. 2005. Analisis Multivariat Pemasaran Edisi Pertama. Jakarta: PT. Gramedia Pustaka Utama
  23. Struyf, A., Hubert, M., dan Rousseeuw, P.J. 1997. Integrating Robust Clustering Techniques in S-PLUS. Jurnal of Computation Statistics and Data Analysis Vol 26. No. 1: Hal. 17-37
  24. Supranto, J. 2004. Analisis Multivariat : Arti dan Interpretasi. Jakarta: PT. Rineka Cipta
  25. WHO. 2014. WHO Global Nutrition Target: Stunting Policy Brief. Geneva
  26. WHO. 2017. Stunted Growth and Development. Geneva
  27. Zhang, B., Hsu, M.., & Dayal, U. 1999. Clustering Algorithm K-Harmonic Means-A Data Clustering Algorithm. Hewlett-Packard Labs Technical Report HPL-1999-124

Last update:

No citation recorded.

Last update:

No citation recorded.