skip to main content

ANALISIS KLASIFIKASI REKAPITULASI PENGADUAN PELANGGAN UP3 PT. PLN SEMARANG MENGGUNAKAN ALGORITMA QUEST (QUICK, UNBIASED, AND EFFICIENT STATISTICAL TREE)

Sang Nur Cahya Widiutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Every company must have a way to solve the problems faced by its customers, PT. PLN Persero, the Indonesian national energy utility, must have a method to handle consumer complaints. PT. PLN Persero has a recovery time strategy for resolving consumer concerns, but it is not always effective in doing so. The QUEST algorithm (Quick, Unbiased, and Efficient Statistical Tree) approach is used to classify the problem of the recovery time policy failing on specific complaints. Classification of complaint data in order to obtain characteristics and factors as the main influence on the complaints and be able to provide new opinions for PT. PLN to address customer complaints. The QUEST method is a classification tree technique with two nodes per split that yields an unbiased variable. The QUEST method may be used with both category and numerical data. QUEST uses three stages to create a classification tree: picking the splitting variable, identifying the split point, and pausing the split. The classification tree generated has a tree depth of four layers and obtained three essential factors in the classification, namely weather, the number of customers experiencing the same event, and distance from the site. The classification tree accuracy level is 0.851 (or 85.1%), with a prediction error rate of 0.149 (or 14.9%).

Keywords: binary classification tree, recovery time, QUEST algorithm.

Fulltext View|Download
Keywords: binary classification tree, recovery time, QUEST algorithm.

Article Metrics:

  1. Brown, M. B., Forsythe, A. B. 1974. Robust Tests for the Equality of Variances. Journal of the American Statistical Association, Vol. 69, Hal: (346), 364–367
  2. Grabczewski, K. 2014. Meta-Learning in Decision Tree Induction. Switzerland: Springer International Publishing
  3. Kim, H., Loh. W.-Y. 2001. Classification Tree with Unbiased Multiway Splits. Am. Statist. Assoc.Vol.96, Hal: 590-604
  4. Lestari, R. D. 2005. Identifikasi Rumah Tangga Miskin di Kota Padang Menggunakan Metode CHAID. Skripsi. Institut Teknologi Bandung. Bandung
  5. Lewis, R.C., Booms, B.H. (1983). The marketing aspects of service quality. Proceeding Marketing: American Marketing Association, Chicago
  6. Loh, W.-Y., Shih, Y.-S. 1997. Split Selection Methods for Classification Trees, Statistica Sinica Vol.7, Hal: 815-840
  7. Marsudi, D. 2006. OPERASI SISTEM TENAGA LISTRIK. Edisi Ke 2. Yogyakarta: Graha Ilmu
  8. Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., dan de Mendonca, A. 2011. Data Mining Methods in The Prediction of Dementia. BMC Research Notes. Vol.4, Hal: 299
  9. Prasetyo, E. 2012. Data Mining: Konsep dan Aplikasi menggunakan MATLAB. Yogyakarta: C.V. Andi Offset
  10. Rachmatin, D., Kania. S. 2009. Penerapan Prosedur Lachenbruch Pada Kasus Quadratic Discriminant Analysis. Prosiding Seminar Nasional 2009, Universitas Pendidikan Indonesia
  11. Rokach, L., Maimon, O. 2008. Data Mining with Decision Trees “Theory and Application”. USA: World Scientific Publishing Co. Pte. Ltd
  12. Shanefield, D. J. 2001. Industrial Electronics for Engineers, Chemists, and Technicians. New York: William Andre Publishing
  13. Walpole, R. E. 1992. Pengantar Statistika. Edisi Ke 3. Jakarta: PT. Gramedia Pustaka Utama

Last update:

No citation recorded.

Last update:

No citation recorded.