skip to main content

KLASIFIKASI PENENTUAN LOKASI STRATEGIS OUTLET BANK SYARIAH INDONESIA DENGAN METODE NAÏVE BAYES CLASSIFIER

*Navioer Rizal  -  Departement of Mathematics, Universitas Jember, Jalan Kalimantan No. 37 Kampus Tegalboto Jember Indonesia 68121, Indonesia
Mohamat Fatekurohman  -  Jurusan Matematika, Fakultas MIPA, Universitas Jember, Indonesia
Dian Anggraeni  -  Jurusan Matematika, Fakultas MIPA, Universitas Jember, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Today, the development of the banking sector occurs in the conventional banking sector and the Islamic banking sector, one of which is developing Bank Syariah Indonesia. Bank Syariah Indonesia strives to develop a strategic new office network or branch outlet location that has not been optimal. This research aims to know and analyze the model and determination of variable importance and its effect on the strategic location classification of Bank Syariah Indonesia outlets using the Naïve Bayes Classifier method. The classification model of strategic location determination of offices or outlets obtained from the analysis results in calculating prior probability values and conditional probabilities. The results of the model evaluation test indicator for the Naïve Bayes Classifier method showed an accuracy value of 94,12% and an AUC score of 0,9808. The model was able to classify 16 of the 17 data. The model produces the results of variables importance 6 recommendations variables of the 7 variables used in the study it is location in office area, location in industrial area, populations density of the area, moslem populations of the area, distance from the security office, and distance from the market. The variable importance can be a consideration of Bank Syariah Indonesia optimizing indicators of the office location selection.
Fulltext View|Download
Keywords: Classification; Locations; Naïve Bayes Classifier; Outlet; Strategic

Article Metrics:

  1. Abdurrohman, H., R. Dini., dan A. P. Muharram. 2018. Evaluasi Performa Metode Deep Learning untuk Klasifikasi Citra Lesi Kulit The HAM10000. Prosiding Seminar Nasional Instrumentasi, Kontrol dan Otomasi (SNIKO). Desember 2019: 63-68
  2. Bramer, M. 2007. Principles of Data Mining. London : Springer
  3. Faturahman, M. D dan R. Z. Maliki. 2018. Evaluasi Kesesuaian Lokasi Bank BRI Di Wilayah Kantor Cabang Setiabudi Kota Bandung. Majalah Geografi Indonesia. 32(2) : 184 -197
  4. Fithri, D. L. 2016. Model Data Mining Dalam Penentuan Kelayakan Pemilihan Tempat Tinggal Memakai Metode Naive Bayes. Jurnal Simetris. 7(2) : 725-730
  5. Gorunescu, F. 2011. Data Mining Concepts, Models and Techniques. Berlin Heidelberg: Springer
  6. Han, J, M. Kamber, dan J. Pei. 2011. Data Mining Concept and Techniques. San Francisco: Morgan Kaufmann Publishers
  7. Imandasari, T, dkk. 2019. Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air. Prosiding Seminar Nasional Riset Information Science (SENARIS). September 2019: 750-761
  8. Kasmir. 2010. Pemasaran Bank. Jakarta : Kencana
  9. Saleh, A. 2015. Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Citec Journal. 2(3): 207-217
  10. Wulandari, S dan M. Iqbal. 2021. Analisis Kelayakan Lokasi Promosi Dalam Penerimaan Mahasiswa Baru (PMB) Dengan Algoritma Naïve Bayes dan Decision Tree C4.5. KILAT. 10(1) : 169-178

Last update:

No citation recorded.

Last update:

No citation recorded.