BibTex Citation Data :
@article{J.Gauss33095, author = {Erysta Rismia and Tatik Widiharih and Rukun Santoso}, title = {KLASIFIKASI REGRESI LOGISTIK MULTINOMIAL DAN FUZZY K-NEAREST NEIGHBOR (FK-NN) DALAM PEMILIHAN METODE KONTRASEPSI DI KECAMATAN BULAKAMBA, KABUPATEN BREBES, JAWA TENGAH}, journal = {Jurnal Gaussian}, volume = {10}, number = {4}, year = {2021}, keywords = {Contraceptive Methods, Multinomial Logistic Regression, FKNN, APER, Press’s Q.}, abstract = { The characteristics of society in choosing contraceptive methods are also the crucial factors for the government to prepare the family planning services needed at Bulakamba District, Brebes Regency, Central Java. In this case, a classification process needs to be done to assist the process of classifying the characteristics of society in the selection of contraceptive methods. Multinomial Logistic Regression classification is good in exploring data information meanwhile Fuzzy K Nearest Neighbor (FK-NN) classification is good for handling big data and noise. These two methods used in this study because they are relevant to the data applied and will be compared their classification accuracy through APER and Press's Q calculations.The classification accuracy results obtained based on the APER calculation for Multinomial Logistic Regression is 88,25% and Fuzzy K Nearest Neighbor (FK-NN) is 88,92%. Meanwhile, the Press's Q value of both methods are 9600,945 and 9518,014 greater than χ 2 𝛼 ,1 which is 3,841, so that it is statistically accurate. Based on the results obtained, it can be concluded that Multinomial Logistic Regression classification method has a better classification accuracy than Fuzzy K Nearest Neighbor (FK-NN) method. }, issn = {2339-2541}, pages = {476--487} doi = {10.14710/j.gauss.10.4.476-487}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/33095} }
Refworks Citation Data :
The characteristics of society in choosing contraceptive methods are also the crucial factors for the government to prepare the family planning services needed at Bulakamba District, Brebes Regency, Central Java. In this case, a classification process needs to be done to assist the process of classifying the characteristics of society in the selection of contraceptive methods. Multinomial Logistic Regression classification is good in exploring data information meanwhile Fuzzy K Nearest Neighbor (FK-NN) classification is good for handling big data and noise. These two methods used in this study because they are relevant to the data applied and will be compared their classification accuracy through APER and Press's Q calculations.The classification accuracy results obtained based on the APER calculation for Multinomial Logistic Regression is 88,25% and Fuzzy K Nearest Neighbor (FK-NN) is 88,92%. Meanwhile, the Press's Q value of both methods are 9600,945 and 9518,014 greater than χ 2𝛼,1 which is 3,841, so that it is statistically accurate. Based on the results obtained, it can be concluded that Multinomial Logistic Regression classification method has a better classification accuracy than Fuzzy K Nearest Neighbor (FK-NN) method.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics