skip to main content

KLASIFIKASI REGRESI LOGISTIK MULTINOMIAL DAN FUZZY K-NEAREST NEIGHBOR (FK-NN) DALAM PEMILIHAN METODE KONTRASEPSI DI KECAMATAN BULAKAMBA, KABUPATEN BREBES, JAWA TENGAH

*Erysta Risky Rismia  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The characteristics of society in choosing contraceptive methods are also the crucial factors for the government to prepare the family planning services needed at Bulakamba District, Brebes Regency, Central Java. In this case, a classification process needs to be done to assist the process of classifying the characteristics of society in the selection of contraceptive methods. Multinomial Logistic Regression classification is good in exploring data information  meanwhile Fuzzy K Nearest Neighbor (FK-NN) classification is good for handling big data and noise. These two methods used in this study because they are relevant to the data applied and will be compared their classification accuracy through APER and Press's Q calculations.The classification accuracy results obtained based on the APER calculation for Multinomial Logistic Regression is 88,25% and Fuzzy K Nearest Neighbor (FK-NN) is 88,92%.  Meanwhile, the Press's Q value of both methods are 9600,945 and 9518,014 greater than χ 2𝛼,1 which is 3,841, so that it is statistically accurate. Based on the results obtained, it can be concluded that Multinomial Logistic Regression classification method has a better classification accuracy than Fuzzy K Nearest Neighbor (FK-NN) method.

 

Fulltext View|Download
Keywords: Contraceptive Methods, Multinomial Logistic Regression, FKNN, APER, Press’s Q.

Article Metrics:

  1. Bewick, V., Cheek, L., dan Ball, J. 2005. Statistics Review 14: Logistic Regression. Critical Care Vol. 9, No. 1 : Hal. 112-118
  2. Hosmer, D.W., dan Lemeshow, S . 2000. Applied Logistic Regression. New York : John Wiley and Sons Inc
  3. Johnson, R., dan Wichern, D. 2007. Applied Multivariate Statistical Analysis. New Jersey : Pearson Education, Inc
  4. Kristiani, Y.P., Safitri, D., dan Ispiyanti, D. 2015. Klasifikasi Kelompok Rumah Tangga di Kabupaten Blora Menggunakan Multivariate Adaptive Regression Spline (Mars) Dan Fuzzy K-Nearest Neighbor (FK-NN). Gaussian Vol. 4, No. 4 : Hal. 1077-1085
  5. Li, D., Deogun, J.S., dan Wang, K. 2007. Gene Function Classification Using Fuzzy K-Nearest Neighbor Approach. Proceedings - 2007 IEEE International Conference on Granular Computing, GrC 2007 : Hal. 644-647
  6. Prasetyo, E. 2012. Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta : Penerbit Andi
  7. Puspita, D., Suparti., dan Wilandari, Y. 2014. Klasifikasi Tingkat Keluarga Sejahtera Dengan Menggunakan Metode Regresi Logistik Ordinal dan Fuzzy K-Nearest Neighbor. Gaussian Vol. 3, No. 4 : Hal. 645-653
  8. World Health Organization (WHO). 2016. Selected Practice Recommendations for Contraceptive Use. Switzerland : WHO Press

Last update:

No citation recorded.

Last update:

No citation recorded.