BibTex Citation Data :
@article{J.Gauss31335, author = {Silvia Suryana and Budi Warsito and Suparti Suparti}, title = {PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK}, journal = {Jurnal Gaussian}, volume = {10}, number = {4}, year = {2021}, keywords = {Telemarketing, Hyperopt, Gradient Boosting}, abstract = { Telemarketing is another form of marketing which is conducted via telephone. Bank can use telemarketing to offer its products such as term deposit. One of the most important strategy to the success of telemarketing is opting the potential customer to create effective telemarketing. Predicting the success of telemarketing can use machine learning. Gradient boosting is machine learning method with advanced decision tree. Gardient boosting involves many classification trees which are continually upgraded from previous tree. The optimal classification result cannot be separated from the role of the optimal hyperparameter. Hyperopt is Python library that can be used to tune hyperparameter effectively because it uses Bayesian optimization. Hyperopt uses hyperparameter prior distribution to find optimal hyperparameter. Data in this study including 20 independent variables and binary dependent variable which has ‘yes’ and ‘no’ classes. The study showed that gradient boosting reached classification accuracy up to 90,39%, precision 94,91%, and AUC 0,939. These values describe gradient boosting method is able to predict both classes ‘yes’ and ‘no’ relatively accurate. }, issn = {2339-2541}, pages = {617--623} doi = {10.14710/j.gauss.10.4.617-623}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/31335} }
Refworks Citation Data :
Telemarketing is another form of marketing which is conducted via telephone. Bank can use telemarketing to offer its products such as term deposit. One of the most important strategy to the success of telemarketing is opting the potential customer to create effective telemarketing. Predicting the success of telemarketing can use machine learning. Gradient boosting is machine learning method with advanced decision tree. Gardient boosting involves many classification trees which are continually upgraded from previous tree. The optimal classification result cannot be separated from the role of the optimal hyperparameter. Hyperopt is Python library that can be used to tune hyperparameter effectively because it uses Bayesian optimization. Hyperopt uses hyperparameter prior distribution to find optimal hyperparameter. Data in this study including 20 independent variables and binary dependent variable which has ‘yes’ and ‘no’ classes. The study showed that gradient boosting reached classification accuracy up to 90,39%, precision 94,91%, and AUC 0,939. These values describe gradient boosting method is able to predict both classes ‘yes’ and ‘no’ relatively accurate.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics