BibTex Citation Data :
@article{J.Gauss33102, author = {Endah Fauziyah and Dwi Ispriyanti and Tarno Tarno}, title = {PEMODELAN DAN PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN ARIMAX-TARCH}, journal = {Jurnal Gaussian}, volume = {10}, number = {4}, year = {2021}, keywords = {IHSG, forecasting, ARIMAX, TARCH}, abstract = { The Composite Stock Price Index (IHSG) is a value that describes the combined performance of all shares listed on the Indonesia Stock Exchange. JCI serves as a benchmark for investors in investing. The method used to predict future conditions based on past data is forecasting . Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) is amodel time series that can be used for forecasting. Financial data has high volatility which causes the variance of the residual model which is not constant (heteroscedasticity). ARCH / GARCH model is used to solve the heteroscedasticity problem in the model. If the data is heteroscedastic and asymmetric, then the model can be used Threshold Autoregressive Conditional Heteroskedasticity (TARCH). The data used are the Composite Stock Price Index (IHSG) for the January 2000 - April 2020 period and the dollar exchange rate data for the January 2000 - April 2020 period asvariables independent from the ARIMAX model. The best model used to predict the JCI from the results of this study is the ARIMAX (1,1,0) -TARCH (1,2) model with an AIC value of -0.819074. }, issn = {2339-2541}, pages = {595--604} doi = {10.14710/j.gauss.10.4.595-604}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/33102} }
Refworks Citation Data :
The Composite Stock Price Index (IHSG) is a value that describes the combined performance of all shares listed on the Indonesia Stock Exchange. JCI serves as a benchmark for investors in investing. The method used to predict future conditions based on past data is forecasting . Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) is amodel time series that can be used for forecasting. Financial data has high volatility which causes the variance of the residual model which is not constant (heteroscedasticity). ARCH / GARCH model is used to solve the heteroscedasticity problem in the model. If the data is heteroscedastic and asymmetric, then the model can be used Threshold Autoregressive Conditional Heteroskedasticity (TARCH). The data used are the Composite Stock Price Index (IHSG) for the January 2000 - April 2020 period and the dollar exchange rate data for the January 2000 - April 2020 period asvariables independent from the ARIMAX model. The best model used to predict the JCI from the results of this study is the ARIMAX (1,1,0) -TARCH (1,2) model with an AIC value of -0.819074.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics