skip to main content

PENDEKATAN METODE MARKOWITZ UNTUK OPTIMALISASI PORTOFOLIO DENGAN RISIKO EXPECTED SHORTFALL (ES) PADA SAHAM SYARIAH DILENGKAPI GUI MATLAB

*Umiyatun Muthohiroh  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rita Rahmawati  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

A portfolio is a combination of two or more securities as investment targets for a certain period of time with certain conditions. The Markowitz method is a method that emphasizes efforts to maximize return expectations and can minimize stock risk. One method that can be used to measure risk is Expected Shortfall (ES). ES is an expected measure of risk whose value is above Value-at-Risk (VaR). To make it easier to calculate optimal portfolios with the Markowitz method and risk analysis with ES, an application was made using the Matlab GUI. The data used in this study consisted of three JII stocks including CPIN, CTRA, and BSDE stocks. The results of the portfolio formation with the Markowitz method obtained an optimal portfolio, namely the combination of CPIN = 34.7% and BSDE = 65.3% stocks. At the 95% confidence level, the ES value of 0.206727 is greater than the VaR value (0.15512).

 

 

Fulltext View|Download
Keywords: Portfolio; JII; Markowitz; Expected Shortfall; GUI Matlab

Article Metrics:

  1. Afriana, T., Tarno, dan Sugito. 2017. Analisis Pembentukan Portofolio pada Perusahaan yang Terdaftar Di Lq45 dengan Pendekatan Metode Markowitz Menggunakan Gui Matlab. Jurnal Gaussian. Vol. 6(2):251-260. Semarang: UNDIP
  2. Jorion, P., 2000. Value at Risk: The New Benchmark for Managing Financial Risk. Second Edition. The McGraw-Hill Companies: Inc. New York
  3. Maruddani, D.A.I. dan Purbowati, A., 2009. Pengukuran Value at Risk Pada Aset Tunggal dan Portofolio dengan Simulasi Monte Carlo. Media Statistika. Vol. 2(2):93-104. Semarang: UNDIP
  4. Maruddani, D.A.I. 2019. Value at Risk untuk Pengukuran Risiko Investasi Saham : Aplikasi dengan Program R. Jawa Timur: Wade Group
  5. McNeil, A. J., R. Frey dan P. Embrechts, 2005. Quantitative Risk Management. Pricenton University Press and Oxford
  6. Rockafellar, R.T., and Uryasev, S., 2000. Optimization of Conditional Value at Risk. Journal of Risk, Vol. 2, No. 3
  7. Tandelilin, E. 2010. Portofolio dan Investasi Teori dan Aplikasi, Edisi Pertama. Yogyakarta: Kanisius
  8. http://finance.yahoo.com. Diakses pada 15 Februari 2020

Last update:

No citation recorded.

Last update:

No citation recorded.