skip to main content

QUERY EXPANSION RANKING PADA ANALISIS SENTIMEN MENGGUNAKAN KLASIFIKASI MULTINOMIAL NAÏVE BAYES (Studi Kasus : Ulasan Aplikasi Shopee pada Hari Belanja Online Nasional 2020)

*Lutfiah Maharani Siniwi  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Shopee is one of the e-commerce sites that has many users in Indonesia. Shopee provides various attractive promos on special days such as National Online Shopping Day on December 12. Shopee site was a complete error on December 12, 2020. Complaints and opinions of Shopee users were also shared through various media, one of them was Google Play Store. Sentiment analysis was used to see the user's response to the Shopee’s incident. Sentiment analysis results can be extracted to obtain information regarding positive or negative reviews from Shopee users. Sentiment analysis was performed using the Multinomial Naïve Bayes classification. the simplest method of probability classification, but it is sensitive to feature selection so that the amount of data is determined by the results of feature selection Query Expansion Ranking. The algorithm that has the highest accuracy and kappa statistic is the best algorithm in classifying Shopee’s users sentiment. The results showed that the classification performance using Multinomial Naïve Bayes with 80% of the features (terms) which have the highest Query Expansion Ranking value was obtained at the accuracy and kappa statistics values are 89% and 77.62%. This means that Multinomial Nave Bayes has a good performance in classifying reviews and the number of features used affects the performance results obtained.

Fulltext View|Download
Keywords: Shopee; National Online Shopping Day; Multinomial Naïve Bayes; Query Expansion Ranking

Article Metrics:

  1. Chen, J., Huang, H., Tian, S. & Qu, Y. 2009. Feature Selection for Text Classification with Naïve Bayes. Expert Systems with Applications Vol. 36, No. 3, Hal: 5432–5435
  2. Fauzi, M.A., Arifin, A.Z. & Gosaria, S.C. 2017. Indonesian News Classification Using Naïve Bayes and Two-Phase Feature Selection Model. Indonesian Journal of Electrical Engineering and Computer Science Vol. 8, No. 3, Hal: 610-615
  3. Feldman, R. & Sanger, J. 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge: Cambridge University Press
  4. Han, J., Kamber, M. & Pei, J. 2012. Data Mining: Concepts and Techniques (3rd ed.). San Francisco: Morgan Kaufmann
  5. idEA. (2020). Hari Belanja Online Nasional. Tesedia: https://harbolnas.idea.or.id/ (diakses pada tanggal 1 April 2021)
  6. iPrice. (2020). Peta E Commerce Indonesia. Tersedia: https://iprice.co.id/insights/mapofeco mmerce/ (diakses pada tanggal 5 April 2021)
  7. Ling, J., Kencana, I.N. & Oko, T.B. 2014. Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika Vol. 3, No. 3, Hal: 92-99
  8. Liu, B. 2012. Sentiment Analysis and Opinion Mining. Chicago: Morgan & Claypool Publisher
  9. Manning, C.D., Raghavan, P. & Schutze, H. 2009. Introduction to Information Retrieval. Cambridge: Cambridge University Press
  10. Maulida, I., Suyatno, A., & Hatta, H.R. 2016. Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia. Jurnal SIFO Mikroskil Vol. 17, No. 2, Hal: 249-258
  11. McCallum, A. & Nigam, K. 1998. A Comparison of Event Models for Naïve Bayes Text Classification. 752. Workshop on Learning for Text Categorization AAAI: 1998
  12. Mujilahwati, S. 2016. Pre-Processing Text Mining pada Data Twitter. Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016): 18-19 Maret 2016
  13. Parlar, T. & Özel, S.A. 2016. A New Feature Selection Method for Sentiment Analysis of Turkish Reviews. International Symposium on INnovations in Intelligent SysTems and Applications (INISTA): Agustus 2016
  14. Said, B. & Pranoto, Y.M. 2015. Klasifikasi Data SMS Center Bupati Pamekasan Menggunakan Naïve Bayes Dengan Mad Smoothing. IdeaTech, STTS Surabaya, Hal: 92-99
  15. Tessem, B., Bjørnestad, S., Chen, W. & Nyre, L. 2015. Word Cloud Visualisation of Locative Information. Journal of Location Based Services Vol. 9, No. 4
  16. Vierra & Garrett. 2015. Understanding Interobserver Agreement:The Kappa Statistic. Family Medicinne, Vol. 37, No. 5, Hal: 360-363
  17. Wahid, D. H. & Azhari, S.N. 2016. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. Indonesian Journal of Computing and Cybernetics Systems, Vol. 10, No. 2, Hal: 207-218

Last update:

No citation recorded.

Last update:

No citation recorded.