BibTex Citation Data :
@article{J.Gauss32790, author = {Hanik Malikhatin and Agus Rusgiyono and Di Asih Maruddani}, title = {PENERAPAN k-MODES CLUSTERING DENGAN VALIDASI DUNN INDEX PADA PENGELOMPOKAN KARAKTERISTIK CALON TKI MENGGUNAKAN R-GUI}, journal = {Jurnal Gaussian}, volume = {10}, number = {3}, year = {2021}, keywords = {prospective TKI workers; cluster; k-Modes Clustering; categorical data; Dunn Index; GUI}, abstract = { Prospective TKI workers who apply for passports at the Immigration Office Class I Non TPI Pati have countries destinations and choose different PPTKIS agencies. Therefore, the grouping of characteristics prospective TKI needed so that can be used as a reference for the government in an effort to improve the protection of TKI in destination countries and carry out stricter supervision of PPTKIS who manage TKI. The purpose of this research is to classify the characteristics of prospective TKI workers with the optimal number of clusters. The method used is k-Modes Clustering with values of k = 2, 3, 4, and 5. This method can agglomerate categorical data. The optimal number of clusters can be determined using the Dunn Index. For grouping data easily, then compiled a Graphical User Interface (GUI) based application with RStudio. Based on the analysis, the optimal number of clusters is two clusters with a Dunn Index value of 0,4. Cluster 1 consists of mostly male TKI workers (51,04%), aged ≥ 20 years old (91,93%), with the destination Malaysia country (47%), and choosing PPTKIS Surya Jaya Utama Abadi (37,51%), while cluster 2, mostly of male TKI workers (94,10%), aged ≥ 20 years old (82,31%), with the destination Korea Selatan country (77,95%), and choosing PPTKIS BNP2TKI (99,78%). }, issn = {2339-2541}, pages = {359--366} doi = {10.14710/j.gauss.10.3.359-366}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/32790} }
Refworks Citation Data :
Prospective TKI workers who apply for passports at the Immigration Office Class I Non TPI Pati have countries destinations and choose different PPTKIS agencies. Therefore, the grouping of characteristics prospective TKI needed so that can be used as a reference for the government in an effort to improve the protection of TKI in destination countries and carry out stricter supervision of PPTKIS who manage TKI. The purpose of this research is to classify the characteristics of prospective TKI workers with the optimal number of clusters. The method used is k-Modes Clustering with values of k = 2, 3, 4, and 5. This method can agglomerate categorical data. The optimal number of clusters can be determined using the Dunn Index. For grouping data easily, then compiled a Graphical User Interface (GUI) based application with RStudio. Based on the analysis, the optimal number of clusters is two clusters with a Dunn Index value of 0,4. Cluster 1 consists of mostly male TKI workers (51,04%), aged ≥ 20 years old (91,93%), with the destination Malaysia country (47%), and choosing PPTKIS Surya Jaya Utama Abadi (37,51%), while cluster 2, mostly of male TKI workers (94,10%), aged ≥ 20 years old (82,31%), with the destination Korea Selatan country (77,95%), and choosing PPTKIS BNP2TKI (99,78%).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics