skip to main content

ANALISIS METODE BAYESIAN MENGGUNAKAN NON-INFORMATIF PRIOR UNIFORM DISKRIT PADA SISTEM ANTREAN PELAYANAN GERBANG TOL MUKTIHARJO

*Dini Febriani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The growth rate of the traffic that is high resulting in congestion on the road network system. One of the government's efforts in addressing the issue with the build highways to reduce congestion, especially in large cities. One of the queuing phenomena that often occurs in the city of Semarang is the queue at the Toll Gate Muktiharjo, that the queue of vehicles coming to make toll payment. This study aims to determine how the service system at the Toll Gate Muktiharjo. This can be known by getting a queue system model and a measure of system performance from the distribution of arrival and service. The distribution of arrival and service are determined by finding the posterior distribution using the Bayesian method. The bayesian method combine the likelihood function of the sample and the prior distribution. The likelihood function is a negative binomial. The prior distribution used a uniform discrete. Based on the calculations and analysis, it can be concluded that the queueing system model at the Toll Gate Muktiharjo is a (Beta/Beta/5):(GD/∞/∞). The queue simulation obtained that the service system Toll Gate Muktiharjo is optimal based on the size of the system performance because busy probability is higher than jobless probability.

 

 

Fulltext View|Download
Keywords: toll gate muktiharjo; queue; bayesian; beta; size of the system performance

Article Metrics:

  1. Bain, L. J. dan Engelhardt, M. 1992. Introduction Probability and Mathematical Statistics Second Edition. California: Duxburry Press
  2. Bolstad, W. M. 2017. Introduction To Bayesian Statistics Third Edition. America: John Wiley & Sons, Inc
  3. Box, G. E. P. dan Tiao, G. C. 1973. Bayesian Inference In Statistical Analysis. Philippines: Addision-Wesley Publishing Company
  4. Daniel, W. W. 1989. Statistik Nonparametrik Terapan. Diterjemahkan oleh: Alex Tri Kantjono W. Jakarta: PT. Gramedia. Terjemahan dari: Applied Nonparametric Statistics
  5. Gross, D. dan Harris, C. 1998. Fundamental of Queueing Theory: Third Edition. New York: John Willey and Sons, Inc
  6. Jasa Marga. 2019. Sekilas Jasa Marga. https://www.jasamarga.com/public/id/infoperusahaan/ProfilPerusahaan/Overview.aspx. Diakses: 17 Maret 2021
  7. Kakiay, T. J. 2004. Dasar Teori Antrian untuk Kehidupan Nyata. Yogyakarta: Andi
  8. Risdiyanto. 2014. Rekayasa & Manajemen Lalu Lintas Teori dan Aplikasi. Yogyakarta: LeutikaPrio
  9. Subagyo, P. Asri, M. dan Handoko, T. H. 1992. Dasar-Dasar Operation Research. Yogyakarta: BPFE
  10. Subanar. 2019. Inferensi Bayesian dengan R. Yogyakarta: UGM Press
  11. Taha, H. A. 1996. Riset Operasi, Jilid Dua. Jakarta: Binarupa Aksara
  12. Tamin, O. Z. 2000. Perencanaan dan Pemodelan Transportasi, Edisi Kedua. ITB
  13. Walpole, R. E. 1995. Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, Edisi Keempat. Diterjemahkan oleh: RK Sembiring. Bandung: ITB. Terjemahan dari: Probability and Statistics for Engineers and Scientists
  14. Wrediningsih A. P., Sugito, Prahutama A., and Hakim A. R. 2018. Non-Poisson queueing model’s identification (Case study: AKAP and AKDP bus on the West Lines bus service of Tirtonadi Surakarta). Journal of Physics. IOP Publishing

Last update:

No citation recorded.

Last update:

No citation recorded.