skip to main content

PENGARUH TRANSFORMASI DATA PADA METODE LEARNING VECTOR QUANTIZATION TERHADAP AKURASI KLASIFIKASI DIAGNOSIS PENYAKIT JANTUNG

*Arafa Rahman Aziz  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Learning Vector Quantization (LVQ) is a type of Artificial Neural Network with a supervised learning process based on competitive learning. Despite the absence of assumptions in LVQ is an advantage, it can be a problem when the predictor variables have big different ranges.This problems can be overcome by equalizing the range of all variables by data transformation so that all variables have relatively same effect. Heart Disease UCI dataset which used in this study is transformed by several transformation methods, such as minmax, decimal scaling, z-score, mean-MAD, sigmoid, and softmax. The result show that the six transformed data can provide better LVQ classification accuracy than the raw data which has 75.99% for training performance accuracy. LVQ classification accuracy with data transformation of minmax, decimal scaling, z-score, mean-MAD, sigmoid, and softmax are 89.16%, 88.22%, 89.7%, 90.1%, 88.17% and 92.18%. Based on the One-way ANOVA test and DMRT post hoc test  known that there are significant differences between the results of the classification with data transformations and raw data in 0,05 significant level of α. It is also known that the best data transformation methods are softmax for training and sigmoid for testing.

 

Keywords: heart disease, neural network, learning vector quantization, classification, data transformation

Fulltext View|Download
Keywords: heart disease, neural network, learning vector quantization, classification, data transformation

Article Metrics:

  1. Berry, M. W., Mohammed, A., & Yap, B.W. 2016. Soft Computing in Data Science. Singapura: Springer
  2. Chamidah, N., Winarto, & Salamah, U. 2012. Pengaruh Normalisasi Data pada Jaringan Syaraf Tiruan Backpropagasi Gradient Descent Adaptive Gain (BPGDAG) untuk Klasifikasi. ITSMART, Vol 1, No 1: hlm 28-33
  3. Eesa, A., & Arabo, W. 2017. A Normalization Methods for Backpropagation: A Comparative Study. Science Journal of University of Zakho Vol 5, No 4: hlm 319-323
  4. Hendrawati, T. 2015. Kajian Metode Imputasi dalam Menangani Missing Data. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS 2015. No 67, hlm: 637-642
  5. Hidayati, N., & Warsito, B. 2012. Prediksi Terjangkitnya Penyakit Jantung dengan Metode Learning Vector Quantization. Media Statistika, Vol. 3, No. 1: hlm 21-30
  6. Johnson, R. & Wichern, D. 2007. Applied Multivariate Statistical Analysis. Edisi 6. USA: Pearson Education Inc
  7. Kusumadewi, S. 2004. Membangun Jaringan Syaraf Tiruan (Menggunakan Matlab dan Excel Link). Edisi 1. Yogyakarta: Graha Ilmu
  8. Lovastatin, K. 2006. Penyakit Jantung dan Penanganannya dengan Metode Alami. Diterjemahkan oleh: Slamet Rianto. Jakarta: PT. P restasi Pustakaraya. Terjemahan dari: Mayo Clinic On Heart Disease and High Blood Pressure
  9. Prasetyo, E. 2014. Data Mining ˗ Mengolah Data menjadi Informasi Menggunakan Matlab. Yogyakarta: ANDI
  10. Pan, J., Zhuang, Y., & Fong, S. 2016. The Impact of Data Normalization on Stock Market Prediction: Using SVM and Technical Indicators. CCIS, Vol 652, No 7: hlm 72-88
  11. Siang, J. 2005. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: ANDI
  12. Sufren, N. Y. 2013. Mahir Menggunakan SPSS Secara Otodidak. Jakarta: PT Elex Media Komputindo
  13. Soeharto, I. 2004. Penyakit Jantung Koroner dan Serangan Jantung. Jakarta: PT Gramedia Pustaka Utama
  14. [UCI] University of California Irvine. 1988. Heart Disease Dataset. https://archive.ics.uci.edu/ml/datasets/Heart+Disease. Diakses: 9 Februari 2020
  15. Warsito, B. 2009. Kapita Selekta Statistika Neural Network. Semarang: BP Undip Semarang
  16. Widiharih, T. 2007. Buku Ajar Rancangan Percobaan. Semarang: Program Studi Statistika Jurusan Matematika Undip

Last update:

No citation recorded.

Last update:

No citation recorded.