skip to main content

PEMODELAN JUMLAH KASUS DEMAM BERDARAH DENGUE (DBD) DI JAWA TENGAH DENGAN GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION (GWNBR)

*Indah Suryani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Dengue Hemorrhagic Fever (DHF) is one of the diseases with unsual occurrence in Central Java and spread throughout the regency/city. The number sufferers of this disease is still high because the mortality rate is still above the national target. Regarding the less handling of DHF spread, it is necessary to make a plan by identify the factors that allegedly affect that case. Characteristics of data the DHF cases is count data, so this research is carried out using poisson regression. If in poisson regression there is overdispersion, it can be overcome using negative binomial regression. Meanwhile to see the spatial effect, we can use the Geographically Weighted Negative Binomial Regression (GWNBR) method. GWNBR modeling uses a fixed exponential kernel for weighting function. GWNBR is better at modeling the number of DHF cases because it has the smallest AIC value than poisson regression and negative binomial regression. The results of research with poisson regression obtained three variables that have a significant effect on dengue cases. For negative binomial regression, two variables have a significant effect on DHF cases. While the GWNBR method obtained two groups of districts/cities based on significant variables. The variables affecting the number of DHF cases in all districts/cities in Central Java are the percentage of healthy houses, the percentage of clean water quality, and the ratio of medical personnel.

Keywords: DHF, GWNBR, Poisson Regression, Binomial Negative Regression, Fixed Exponential Kernel

Fulltext View|Download
Keywords: DHF, GWNBR, Poisson Regression, Binomial Negative Regression, Fixed Exponential Kernel

Article Metrics:

  1. AnseIin, L., 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic Publishers
  2. Cameron, A. C. & Trivedi, P. K., 1998. Regression Analysis of Count Data. Cambridge: Cambridge University Press
  3. Cameron, A. & Trivedi, P., 1990. Regression-Based Test For Overdispersion In The Poisson Model. Journal of Econometrics, 46(1), pp. 347-346
  4. Collet, D., 1994. Modelling Survival Data in Medical Research. London: Chapman and Hall
  5. Dinas Kesehatan Provinsi Jawa Tengah, 2018. Profil Kesehatan Provinsi Jawa Tengah Tahun 2018. Semarang: Dinas Kesehatan Provinsi Jawa Tengah
  6. Fotheringham, S., Brunsdon , C. & Charlton, M., 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. USA: Wiley
  7. Greene, W., 2008. Functional Forms for The Negative Binomial Model for Count Data, Foundation, and Trends in Econometrics. New York: New York University
  8. Hardin, J. & Hilbe, J., 2007. Generalized Linear Models and Extensions Second Edition. Texas: Stata Press
  9. Hidayanti, U., 2015. Pemodelan dan Pemetaan Jumlah Kasus Demam Berdarah Dengue (DBD) di Surabaya dengan Geographically Weighted Negative Binomial Regression (GWNBR) dan Flexibly Shaped Spatial Scan Statistic. Jurnal Sains dan Seni ITS, 4(2), p. 120
  10. Hilbe, J., 2011. Negative Binomial Regression, Second Edition. New York: Cambridge University Press
  11. Hocking, R. R., 1996. Methods and Applications of Linear Models: Regression and Analysis of Variance. New York: John Wiley and Sons
  12. Hosmer, D. & Lemeshow, S., 1995. Applied Logistic Regression. New York: John Wiley and Sons Inc
  13. Kemenkes, 2010. Demam Berdarah Dengue. Buletin Jendela Epidemiologi, Volume 2, p. 48
  14. McCullagh, P. & Nelder, J. A., 1989. Generalized Linear Models. London: Chapman and Hall
  15. Myers, R. H., 1990. Classical and Modern Regression with Applicaton. Boston: PWS-KENT Publishing Company
  16. Notoatmodjo, S., 2003. Ilmu Kesehatan Masyarakat, Prinsip-Prinsip Dasar. Jakarta: Rineka Cipta
  17. Ricardo, A. & Carvalho, T., 2013. Geographically Weighted Negative Binomial Regression-Incorporating Overdispersion. New York: Springer Science
  18. Soedarto, 2012. Demam Berdarah Dengue. Surabaya: Sagung Seto
  19. Statistik, B. P., 2018. Badan Pusat Statistik Provinsi Jawa Tengah. [Online]
  20. Available at: https://jateng.bps.go.id/ [Diakses 6 April 2020]
  21. Tobing, T., 2011. Pemodelan Kasus Demam Berdarah Dengue (DBD) Di Jawa Timur Dengan Model Poisson Dan Binomial Negatif. Bogor: Institut Pertanian Bogor
  22. Walpole, R., 1995. Pengantar Metode Statistika. Dalam Edisi Ketiga, Alih Bahasa: Bambang Sumantri. Jakarta: PT Gramedia Pusaka Utama

Last update:

No citation recorded.

Last update:

No citation recorded.