BibTex Citation Data :
@article{J.Gauss30383, author = {Adi Arifin and Hasbi Yasin and Budi Warsito}, title = {KLASIFIKASI PERUSAHAAN DI INDONESIA DENGAN MENGGUNAKAN PROBABILISTIC NEURAL NETWORK (Studi Kasus: Perusahaan yang Terdaftar di Bursa Efek Indonesia Tahun 2016)}, journal = {Jurnal Gaussian}, volume = {6}, number = {4}, year = {2017}, keywords = {Classification of Company Performance, PNN, Holdout.}, abstract = { Classification of company performance can be judged by looking at it’s financial status, whether poor or good state. In order to classifying the financial status, annual financial report will be required. By learning financial status of company, it would be useful to evaluate the performance of the company itself from management cause, or as an investor, making strategy for investment to certain company would be easier. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric method. One of the models in Artificial Neural Network is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclid distance and each class share the same values as their weights. By using the holdout method as an evaluation in honesty, the results show that modeling the company performance with PNN model has a very high accuracy. This is confirmed by the level of accuracy of the data model built on the training data is 100%, while trial data also got 100% accuracy. Keywords : Classification of Company Performance, PNN, Holdout. }, issn = {2339-2541}, pages = {490--500} doi = {10.14710/j.gauss.6.4.490-500}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/30383} }
Refworks Citation Data :
Classification of company performance can be judged by looking at it’s financial status, whether poor or good state. In order to classifying the financial status, annual financial report will be required. By learning financial status of company, it would be useful to evaluate the performance of the company itself from management cause, or as an investor, making strategy for investment to certain company would be easier. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric method. One of the models in Artificial Neural Network is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclid distance and each class share the same values as their weights. By using the holdout method as an evaluation in honesty, the results show that modeling the company performance with PNN model has a very high accuracy. This is confirmed by the level of accuracy of the data model built on the training data is 100%, while trial data also got 100% accuracy.
Keywords : Classification of Company Performance, PNN, Holdout.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics