BibTex Citation Data :
@article{J.Gauss29923, author = {Chalimatus Sa'diah and Tatik Widiharih and Arief Hakim}, title = {KLASIFIKASI PEMBERIAN KREDIT SEPEDA MOTOR MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN CHI-SQUARED AUTOMATIC INTERACTION DETECTION (CHAID) DENGAN GUI R (Studi Kasus: Kredit Sepeda Motor di PT X)}, journal = {Jurnal Gaussian}, volume = {10}, number = {2}, year = {2021}, keywords = {Credit, Classification, Binary Logistic Regression, CHAID.}, abstract = { One of the factors causing the bankruptcy of a company is bad credit. Therefore, prospective customers need to be selected so that bad credit cases can be minimized. This study aims to determine the classification of credit granting to prospective customers of company X in order to reduce the risk of bad credit. The method used is the binary logistic regression method and the Chi-Squared Automatic Interaction Detection (CHAID) method. In this study, data used in November 2019 were 690 motorcycle credit data for company X in Gresik. The independent variables in this study are the factors that affect bad credit such as gender, marital status, education, employment, income, expenses, home ownership status and the dependent variable is credit status (bad and current). The analysis results show that the binary logistic regression has an accuracy value of 76.38% with an APER of 23.62%, while CHAID has an accuracy value of 93.19% with an APER of 6.81%. The accuracy value of the CHAID method is greater than the binary logistic regression method, while the APER value of the CHAID method is smaller than the binary logistic regression method. So it can be concluded that the CHAID method is better than the binary logistic regression method in classifying bad credit at company X. Keywords : Credit, Classification, Binary Logistic Regression, CHAID. }, issn = {2339-2541}, pages = {159--169} doi = {10.14710/j.gauss.10.2.159-169}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/29923} }
Refworks Citation Data :
One of the factors causing the bankruptcy of a company is bad credit. Therefore, prospective customers need to be selected so that bad credit cases can be minimized. This study aims to determine the classification of credit granting to prospective customers of company X in order to reduce the risk of bad credit. The method used is the binary logistic regression method and the Chi-Squared Automatic Interaction Detection (CHAID) method. In this study, data used in November 2019 were 690 motorcycle credit data for company X in Gresik. The independent variables in this study are the factors that affect bad credit such as gender, marital status, education, employment, income, expenses, home ownership status and the dependent variable is credit status (bad and current). The analysis results show that the binary logistic regression has an accuracy value of 76.38% with an APER of 23.62%, while CHAID has an accuracy value of 93.19% with an APER of 6.81%. The accuracy value of the CHAID method is greater than the binary logistic regression method, while the APER value of the CHAID method is smaller than the binary logistic regression method. So it can be concluded that the CHAID method is better than the binary logistic regression method in classifying bad credit at company X.
Keywords: Credit, Classification, Binary Logistic Regression, CHAID.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics