slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
KLASIFIKASI PEMBERIAN KREDIT SEPEDA MOTOR MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN CHI-SQUARED AUTOMATIC INTERACTION DETECTION (CHAID) DENGAN GUI R (Studi Kasus: Kredit Sepeda Motor di PT X) | Sa'diah | Jurnal Gaussian skip to main content

KLASIFIKASI PEMBERIAN KREDIT SEPEDA MOTOR MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN CHI-SQUARED AUTOMATIC INTERACTION DETECTION (CHAID) DENGAN GUI R (Studi Kasus: Kredit Sepeda Motor di PT X)

*Chalimatus Sa'diah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

One of the factors causing the bankruptcy of a company is bad credit. Therefore, prospective customers need to be selected so that bad credit cases can be minimized. This study aims to determine the classification of credit granting to prospective customers of company X in order to reduce the risk of bad credit. The method used is the binary logistic regression method and the Chi-Squared Automatic Interaction Detection (CHAID) method. In this study, data used in November 2019 were 690 motorcycle credit data for company X in Gresik. The independent variables in this study are the factors that affect bad credit such as gender, marital status, education, employment, income, expenses, home ownership status and the dependent variable is credit status (bad and current). The analysis results show that the binary logistic regression has an accuracy value of 76.38% with an APER of 23.62%, while CHAID has an accuracy value of 93.19% with an APER of 6.81%. The accuracy value of the CHAID method is greater than the binary logistic regression method, while the APER value of the CHAID method is smaller than the binary logistic regression method. So it can be concluded that the CHAID method is better than the binary logistic regression method in classifying bad credit at company X.

 

Keywords: Credit, Classification, Binary Logistic Regression, CHAID.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (116KB)    Indexing metadata
Keywords: Credit, Classification, Binary Logistic Regression, CHAID.

Article Metrics:

  1. Anoraga, P. & Pakarti, P. 2001. Pengantar Pasar Modal. Jakarta: PT Rineka Cipta
  2. Darmadji, T. & Fakhruddin, H. 2001. Pasar Modal di Indonesia. Jakarta: Salemba Empat
  3. Elton, E. & Gruber, M. 1991. Modern Portfolio Theory and Investment Analysis. Canada: John Wiley & Sons
  4. Fabozzi, F. 1999. Manajemen Investasi. Diterjemahkan oleh: Tim Penerjemah Salemba Empat
  5. Frade, C.A.Z. 2017. Performance Of Return Models: A PortfolioTeorical Approach. Disertasi. Lisboa. Instuto Superior de Economia e Gestāo
  6. Juniyanto, A. 2016. Analisis Portofolio Optimal Menggunakan Model Korelasi Konstan (Constant Correlation Model) (Studi Kasus: Saham Syariah di Jakarta Islamic Indeks (JII) Periode 27 Agustus 2014-26 Agustus 2015). Skripsi. Yogyakarta. Universitas Islam Negeri Sunan Kalijaga
  7. Hadi, N. 2013. Pasar Modal Acuan Teoritis dan Praktis Investasi di Instrumen Pasar Modal. Yogyakarta: Graha Ilmu
  8. Halim, A. 2003. Analisis Investasi. Jakarta : Salemba Empat
  9. Halim, A. 2015. Analisis Investasi di aset Keuangan . Jakarta: Mitra Wacana Media
  10. Hartono, J. 2014. Teori Portofolio dan Analisis Investasi. Edisi ke-9. Yogyakarta: BPFE
  11. Herlianto, D. 2013. Manajemen Investasi Plus Jurus Mendeteksi Investasi Bodong. Yogyakarta: Gosyen Publishing
  12. Jones, C.P. 2014. Investments Analysis and Management, 7th Edition. New York: John Wiley & Sons, Inc
  13. Samsul, M. 2006. Pasar Modal dan Manajemen Portfolio. Jakarta: Erlangga
  14. Sucitra, A. Y., Yunita, I., & Gustyanan, T. T. 2017. Analisis Portofolio Optimal Berdasarkan Metode Constant Correlation dan Penilaian Kinerja dengan Sharpe dan Treynor Measure. Openlibrary.telkomuniversity.ac.id
  15. Sugiyono. 2013. Metode Penlitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung: Algabeta
  16. Tandelilin, E. 2001. Analisis Investasi dan Manajemen Portofolio. Yogyakarta: BPFE
  17. Tjolleng, A. 2017. Pengantar Pemograman MATLAB. Jakarta: Kompas Gramedia

Last update:

No citation recorded.

Last update:

No citation recorded.