BibTex Citation Data :
@article{J.Gauss29447, author = {Lina Tanasya and Di Asih Maruddani and Tarno Tarno}, title = {EXPECTED SHORTFALL DENGAN PENDEKATAN GLOSTEN-JAGANNATHAN-RUNKLE GARCH DAN GENERALIZED PARETO DISTRIBUTION}, journal = {Jurnal Gaussian}, volume = {9}, number = {4}, year = {2020}, keywords = {Expected Shortfall; Value at Risk; GJR-GARCH; GPD.}, abstract = { Stock is a type of investment in financial assets that are many interested by investors. When investing, investors must calculate the expected return on stocks and notice risks that will occur. There are several methods can be used to measure the level of risk one of which is Value at Risk (VaR), but these method often doesn’t fulfill coherence as a risk measure because it doesn’t fulfill the nature of subadditivity. Therefore, the Expected Shortfall (ES) method is used to accommodate these weakness. Stock return data is time series data which has heteroscedasticity and heavy tailed, so time series models used to overcome the problem of heteroscedasticity is GARCH, while the theory for analyzing heavy tailed is Extreme Value Theory (EVT). In this study, there is also a leverage effect so used the asymmetric GARCH model with Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model and the EVT theory with Generalized Pareto Distribution (GPD) to calculate ES of the stock return from PT. Bank Central Asia Tbk for the period May 1, 2012-January 31, 2020. The best model chosen was ARIMA(1,0,1) GJR-GARCH(1,2). At the 95% confidence level, the risk obtained by investors using a combination of GJR-GARCH and GPD calculations for the next day is 0.7147% exceeding the VaR value of 0.6925%. }, issn = {2339-2541}, pages = {505--514} doi = {10.14710/j.gauss.v9i4.29447}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/29447} }
Refworks Citation Data :
Stock is a type of investment in financial assets that are many interested by investors. When investing, investors must calculate the expected return on stocks and notice risks that will occur. There are several methods can be used to measure the level of risk one of which is Value at Risk (VaR), but these method often doesn’t fulfill coherence as a risk measure because it doesn’t fulfill the nature of subadditivity. Therefore, the Expected Shortfall (ES) method is used to accommodate these weakness. Stock return data is time series data which has heteroscedasticity and heavy tailed, so time series models used to overcome the problem of heteroscedasticity is GARCH, while the theory for analyzing heavy tailed is Extreme Value Theory (EVT). In this study, there is also a leverage effect so used the asymmetric GARCH model with Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model and the EVT theory with Generalized Pareto Distribution (GPD) to calculate ES of the stock return from PT. Bank Central Asia Tbk for the period May 1, 2012-January 31, 2020. The best model chosen was ARIMA(1,0,1) GJR-GARCH(1,2). At the 95% confidence level, the risk obtained by investors using a combination of GJR-GARCH and GPD calculations for the next day is 0.7147% exceeding the VaR value of 0.6925%.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics