skip to main content

PERAMALAN HARGA SAHAM DENGAN METODE LOGISTIC SMOOTH TRANSITION AUTOREGRESSIVE (LSTAR) (Studi Kasus pada Harga Saham Mingguan PT. Bank Mandiri Tbk Periode 03 Januari 2011 sampai 24 Desember 2018)

*Maria Odelia  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Di Asih I Maruddani  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under

Citation Format:

Series such as financial and economic data do not always form a linear model, so a nonlinear model is needed. One of the popular nonlinear models is the Smooth Transition Autoregressive (STAR). STAR has two possible suitable transition function such as logistic and exponential that need to be test to find the appropriate transition function. The purpose of writing this thesis is to determine the LSTAR model, then use the model to predict the stock price of PT Bank Mandiri. This study uses the data of the weekly stock price of PT Bank Mandiri from the period of January 3, 2011 to December 24, 2018 as insample data and the period of January 1, 2019 to December 30, 2019 as outsample data. The research procedure begins with modeling the data with the Autoregressive (AR) process, testing the linearity of the data, modeling with LSTAR, forecasting, and finally evaluating the results of forecasting. Evaluating the results of the forecasting of the weekly share price of PT Bank Mandiri with the STAR model results in the best nonlinear model LSTAR (1,1). This model produces an highly accurate forecasting result with a value of symmetric Mean Square Error (sMAPE) to be 5.12%.

Keywords: Nonlinear, Time Series, STAR, LSTAR.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
CTA_Maria Odelia
Type CTA
  Download (16KB)    Indexing metadata
Keywords: Nonlinear; Time Series; STAR; LSTAR
Funding: Di Asih I Maruddani, Diponegoro University; Hasbi Yasin, Diponegoro University.

Article Metrics:

  1. Campbell, J.Y. Lo, A.W. dan MacKinlay, A.C. 1997. The Econometrics of Financial Markets. New Jersey: Princeton
  2. Chen, C. Twycross, J. dan Garibaldi., J.M. 2017. A New Accuracy Measure Based on Bounded Relative Error for Time Series Forecasting. PLoS ONE 12(3)
  3. Dijk, V. 1999. Smooth Transition Models: Extensions and Outliers Robust Inference. Amsterdam: Tinberg Institute
  4. Hyndman, R. J. dan Khandakar, Y. 2008. Automatic Time Series Forecasting: The forecast Package for R. 3th Edition. Journal of Statistical Software. Volume 27
  5. Rosadi, D. 2016. Analisis Runtun Waktu dan Aplikasinya dengan R. Yogyakarta: Gajah Mada University Press
  6. Santoso, R. dan Sudarno, S. 2017. Metode Nonlinear Least Square (NLS) untuk Estimasi Parameter Model Wavelet Radial Basis Neural Network (WRBNN). MEDIA STATISTIKA 10(1) 2017: 49-59. DOI: 10.14710/medstat.10.1.49-59
  7. Terasvirta, T. 1994. Spesification, Estimation, and Evaluation of Smooth Transition Autoregressive Models. Journal of the American Statistical Association. Volume 89, 425
  8. Tsay, R. S. 2010. Analysis of Financial Time Series. Edisi Ketiga. Kanada: John Wiley & Sons
  9. Wei, W.S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd Edition. USA: Addison Wesley
  10. Zubir, Z. 2011. Manajemen Portofolio dan Penerapannya dalam Investasi Saham. Jakarta: Salemba Empat

Last update:

No citation recorded.

Last update:

No citation recorded.