skip to main content


*Inarotul Amani Rizki Ananda  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under

Citation Format:

The Consumer Price Index (CPI) provides information on changes in the average price of a group of fixed goods or services that are generally consumed by households within a certain period of time. The General CPI is formed from 7 sectors of public consumption expenditure groups. Because the formation of the consumer price index value is influenced by several sectors, the method that can be used is the transfer function method. The purpose of this study is to analyze the transfer function model so that the best model is produced to predict CPI in Purwokerto for the next several periods. In this study, general CPI modeling will be carried out based on the CPI value for the transportation services sector and the CPI for the Health sector in Purwokerto from January 2014 to July 2019 using the multi-input transfer function method. Based on the analysis, the best models are obtained, namely the multi-input transfer function model (2,0,0) (0,1,0) and the ARIMA noise series ([3], 0,0). The model has an Akaike's Information Criterion (AIC) value of 72.42021 and an sMAPE value of  2,351591 % which indicates that the model can be used for forecasting.


Keywords: Consumer Price Index (CPI), Inflation,transfer function, AIC

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Type Research Instrument
  Download (159KB)    Indexing metadata
Keywords: Consumer Price Index (CPI): Inflation; transfer function; AIC

Article Metrics:

  1. Aswi dan Sukarna. 2006. Analisis Deret Waktu:Teori dan Aplikasi. Cetakan pertama (Suntingan: Arif Tiro, Muhammad). Makasar: Andira Publisher
  2. Bank Indonesia. Maret 2016. Indeks Harga Konsumen. Jakarta: Departemen Statistik
  3. Draper, N.R. dan Smith, H. 1992. Applied Regression Analysis Second Edition. New York: John Wiley and sons, Inc
  4. Falk, M., et al. 2006. A first course on time series analysis: examples with SAS. Jerman: University of Wurzburg
  5. Fathurahman, M. 2009. Pemodelan Fungsi Transfer Multi Input. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, Vol.4, No. 2: Hal 8-17
  6. Render, B., dan Heizer, J. 2001. Prinsip-prinsip manajemen operasi. Jakarta: Salemba Empat
  7. Liu, L. M., & Hanssens, D. M. 1982. Identification of multiple-input transfer function models. Communications in statistics-theory and methods, Vol.11, No. 3, Hal. 297-314
  8. Makridakis, S., Wheelwright, S.C. dan Hyndman, R.J. 1999. Forcasting: Method and Aplication. New York : Wiley
  9. Ma’rufah, N.R., Rahayu, S.P., & Suhartono. (2013). Peramalan pendapatan operasional bank menggunakan metode fungsi transfer dan neural network. Jurnal Sains dan Seni ITS, Vol.2, No. 2: Hal 219-224
  10. Rosadi, D. 2012. Ekonometrika dan Analisis Runtun Waktu Terapan dengan Eviews. Yogyakarta: ANDI
  11. Soejoeti, Z. 1987. Analisis Runtun Waktu. Jakarta: Universitas Terbuka
  12. Tsay, R. S. 2005. Analysis of financial time series: Financial Econometrics. New York: John Wiley and sons, Inc
  13. Wei, W. 2006. Time Series Analysis: Univariate and Multi inpute Methods, Second Edition. Boston: Pearson Education Inc

Last update:

No citation recorded.

Last update:

No citation recorded.