skip to main content

PERAMALAN JUMLAH PENUMPANG PESAWAT DI BANDARA INTERNASIONAL AHMAD YANI DENGAN METODE HOLT WINTER’S EXPONENTIAL SMOOTHING DAN METODE EXPONENTIAL SMOOTHING EVENT BASED

Sofiana Sofiana  -  Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Indonesia
*Arief Rachman Hakim scopus  -  Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Indonesia
Iut Triutami  -  Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Forecasting the number of airplane passengers can be a consideration for the airline at Ahmad Yani International Airport related with addition of extra flight. The number of airplane passengers can be influenced by certain seasonal or special events. The seasonal influences can be known through historical data patterns and if there is a seasonal pattern, the Holt Winter’s Exponential Smoothing method can be used. Exponential Smoothing Event Based (ESEB) forecasting method can be use to see the special events that effect the number of airplane passengers at Ahmad Yani International Airport. After compared, the Holt Winter’s Exponential Smoothing method is a better method of forecasting the number of airplane passengers at Ahmad Yani International Airport because it has a smaller error value, namely the MSE value and the MAPE value than the Exponential Smoothing Event Based (ESEB)method. The MAPE and MSE values be produced from the best method each of  5,644139% and 619,998,718 .

Keywords : Airplane Passengers, Seasonal Pattern, Special Event, Exponential Smoothing Event Based , Holt Winter’s Exponential Smoothing.

Fulltext View|Download
Keywords: Airplane Passengers; Seasonal Pattern; Special Event, Exponential Smoothing Event Based; Holt Winter’s Exponential Smoothing

Article Metrics:

  1. Anggraeni, W. (2018). Analisis Kinerja Metode ANFIS untuk Peramalan Kasus Demam Berdarah di Kabupaten Malang . Jurnal Sisfo, 199-212
  2. Anggrainingsih R., G. R. Aprianto and S. W. Sihwi, "Time series forecasting using exponential smoothing to predict the number of website visitor of Sebelas Maret University," 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, 2015, pp. 1419, doi: 10.1109/ICITACEE.2015.7437762
  3. Dewi, E. A. (2018). Perbandingan Metode Holt Winter's Exponential Smoothing dan Extreme Learning Machine(ELM) pada Peramalan Penjualan Semen. Yogyakarta: Universitas Islam Indonesia
  4. Dheviani, S. (2018). Peramalan Banyaknya Penumpang di Bandar Udara Internasional Ahmad Yani Semarang dengan Mempertimbangkan Special event. PRISMA 1, 434-444
  5. Ishak, A. (2010). Manajemen Operasi. Yogyakarta: Graha Ilmu
  6. Kabacoff, R. (2015). R in Action:Data Analysis and Graphics with R. New York: Manning Publication Co
  7. Makridakis, S. (1995). Metode dan Aplikasi Peramalan. Jakarta: Penerbit Erlangga
  8. Montgomery, D. C. (2008). Introduction to Time Series Analysis and Forecasting. Hoboken, New Jersey: John Wiley & Sons
  9. Payu, M. R., & Nurwan. (2019). Metode Exponential Emoothing Event Based (ESEB) dan Metode Winter's Exponential Smoothing (WES) untuk Peramalan Jumlah Penumpang Tiba di Pelabuhan Penyeberangan Gorontalo. Barekeng: Jurnal Ilmu Matematika dan Terapan, 199-204
  10. Rachmansyah, M. I. (2017). Pengaruh penyeimbangan Pergerakan Pesawat terhadap Peninkatan Kinerja Bandara (Studi Kasus: Bandara Internasional Soekarno-Hatta). Warta Ardhia (Jurnal Perhubungan Udara), 13-26
  11. Safitri, T. (2016). Perbandingan Peramalan menggunakan Metode Holt Winter's Exponential Smoothing dan ARIMA . Semarang: Universitas Negeri Semarang
  12. Sudjana. (1986). Metode Statistika. Bandung: Tarsito
  13. Szmit, M. (2012). Usage of Holt-Winters Model and Multilayer Perceptron in Network Traffic Modelling and Anomaly Detection. Informatica, 359-368
  14. Wirabrata, A. (2019). Kebijakan Tarif Tiket Pesawat Akibat Pengenaan Bagasi Berbayar. Jakarta: Pusat Penelitian Badan Keahlian DPR RI
  15. Zulaichah. (2015). Evaluasi Usulan Pembangunan Terminal Baru Bandar Udara H.A.S. Hanandjoeddin Tanjung Pandan. Jurnal Perhubungan Udara, 201-218

Last update:

No citation recorded.

Last update:

No citation recorded.