BibTex Citation Data :
@article{J.Gauss27528, author = {Besya Arif and Agus Rusgiyono and Abdul Hoyyi}, title = {PENGELOMPOKAN PROVINSI-PROVINSI DI INDONESIA MENGGUNAKAN METODE WARD (StudiKasus: Produksi Tanaman Pangan di Indonesia Tahun 2018)}, journal = {Jurnal Gaussian}, volume = {9}, number = {1}, year = {2020}, keywords = {Food Crop; Cluster Analysis; Ward Method; Squared Euclid; Elbow Method}, abstract = { Cluster analysis is a technique for grouping objects or observations into homogeneous groups. Cluster analysis is divided into two methods, namely hierarchy and non-hierarchy. The hierarchy method generally involves a series of n-1 decisions (n is the number of observations) that combine observations into a tree-like structure or dendogram. Hierarchy is divided into two methods, namely agglomerative (concentration) and splitting (distribution). For non-hierarchical methods, the number of clusters can be determined by the researcher. Ward method is a hierarchical cluster analysis method that can maximize homogeneity in the cluster. The Sum-of-Square (SSE) formula is used in this method to minimize variations in the clusters that are formed. In this research, squared euclid distance is used to measure the similarity between object pairs. The data used in this study are secondary data on food crop production, namely rice, corn, soybeans, peanuts, green beans, sweet potatoes, and cassava in Indonesia 2018. To determine the cluster, the elbow method is used to form optimal clusters using WSS formula. Based on the analysis results, it was found that the optimal cluster is four clusters. The first cluster consists of 9 Province, the second cluster consists of 20 Province, the third cluster consists of 1 Province, the fourth cluster consists of 2 Province, and the fifth cluster consists of 2 Province. Keywords: Food Crop, Cluster Analysis, Ward Method, Squared Euclid, Elbow Method }, issn = {2339-2541}, pages = {112--121} doi = {10.14710/j.gauss.9.1.112-121}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/27528} }
Refworks Citation Data :
Cluster analysis is a technique for grouping objects or observations into homogeneous groups. Cluster analysis is divided into two methods, namely hierarchy and non-hierarchy. The hierarchy method generally involves a series of n-1 decisions (n is the number of observations) that combine observations into a tree-like structure or dendogram. Hierarchy is divided into two methods, namely agglomerative (concentration) and splitting (distribution). For non-hierarchical methods, the number of clusters can be determined by the researcher. Ward method is a hierarchical cluster analysis method that can maximize homogeneity in the cluster. The Sum-of-Square (SSE) formula is used in this method to minimize variations in the clusters that are formed. In this research, squared euclid distance is used to measure the similarity between object pairs. The data used in this study are secondary data on food crop production, namely rice, corn, soybeans, peanuts, green beans, sweet potatoes, and cassava in Indonesia 2018. To determine the cluster, the elbow method is used to form optimal clusters using WSS formula. Based on the analysis results, it was found that the optimal cluster is four clusters. The first cluster consists of 9 Province, the second cluster consists of 20 Province, the third cluster consists of 1 Province, the fourth cluster consists of 2 Province, and the fifth cluster consists of 2 Province.
Keywords: Food Crop, Cluster Analysis, Ward Method, Squared Euclid, Elbow Method
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics