BibTex Citation Data :
@article{J.Gauss27523, author = {Laili Khairunnisa and Alan Prahutama and Rukun Santoso}, title = {PEMODELAN REGRESI SEMIPARAMETRIK DENGAN PENDEKATAN DERET FOURIER (Studi Kasus: Pengaruh Indeks Dow Jones dan BI Rate Terhadap Indeks Harga Saham Gabungan}, journal = {Jurnal Gaussian}, volume = {9}, number = {1}, year = {2020}, keywords = {Composite Stock Price Index (CSPI), Semiparametric Regression, Fourier Series, OLS, GCV}, abstract = { The Composite Stock Price Index (CSPI) is a composite index all of types of shares listed on the stock exchange and their movements indicate conditions that occur in the capital market. CSPI is influenced by macroeconomic factors and foreign exchange index. Dow Jones Industrial Average has a linear relationship with CSPI and BI Rate has a repeated relationship with CSPI, so the method is used semiparametric regression with the Fourier series approach. Estimators in semiparametric regression with Fourier series approach were obtained by the Ordinary Least Square (OLS) method. This study uses monthly data which is divided into in sample data and out sample data. Semiparametric regression modelling with Fourier series approach is done by determining the optimal K value which results in a minimum General Cross Validation (GCV) value. In this study, semiparametric regression model with Fourier series approach formed by the optimal K value is 13 and GCV is 2826122. The results of the evaluation of the accuracy of the model performance and forecasting obtained the coefficient of determination is 0,9226, Mean Absolute Percentage Error (MAPE) data in sample 3,8154% and data out sample is 8,4782% which shows that the model obtained has a very accurate performance. Keywords: Composite Stock Price Index (CSPI), Semiparametric Regression, Fourier Series, OLS, GCV }, issn = {2339-2541}, pages = {50--63} doi = {10.14710/j.gauss.9.1.50-63}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/27523} }
Refworks Citation Data :
The Composite Stock Price Index (CSPI) is a composite index all of types of shares listed on the stock exchange and their movements indicate conditions that occur in the capital market. CSPI is influenced by macroeconomic factors and foreign exchange index. Dow Jones Industrial Average has a linear relationship with CSPI and BI Rate has a repeated relationship with CSPI, so the method is used semiparametric regression with the Fourier series approach. Estimators in semiparametric regression with Fourier series approach were obtained by the Ordinary Least Square (OLS) method. This study uses monthly data which is divided into in sample data and out sample data. Semiparametric regression modelling with Fourier series approach is done by determining the optimal K value which results in a minimum General Cross Validation (GCV) value. In this study, semiparametric regression model with Fourier series approach formed by the optimal K value is 13 and GCV is 2826122. The results of the evaluation of the accuracy of the model performance and forecasting obtained the coefficient of determination is 0,9226, Mean Absolute Percentage Error (MAPE) data in sample 3,8154% and data out sample is 8,4782% which shows that the model obtained has a very accurate performance.
Keywords: Composite Stock Price Index (CSPI), Semiparametric Regression, Fourier Series, OLS, GCV
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics