BibTex Citation Data :
@article{J.Gauss27520, author = {Fredy Marianto and Tarno Tarno and Di Asih Maruddani}, title = {PERBANDINGAN METODE NAÏVE BAYES DAN BAYESIAN REGULARIZATION NEURAL NETWORK (BRNN) UNTUK KLASIFIKASI SINYAL PALSU PADA INDIKATOR STOCHASTIC OSCILLATOR (Studi Kasus: Saham PT Bank Rakyat Indonesia (Persero) Tbk Periode Januari 2017 – Agustus 2019)}, journal = {Jurnal Gaussian}, volume = {9}, number = {1}, year = {2020}, keywords = {Stochastic Oscillator, Sinyal Palsu, Klasifikasi, Naïve Bayes, BRNN, Akurasi}, abstract = { Keputusan untuk membeli atau menjual saham merupakan kunci utama untuk memperoleh keuntungan dalam trading dan investasi. Salah satu indikator yang dapat digunakan dalam menentukan momentum untuk membeli atau menjual saham adalah Stochastic Oscillator. Sebagai indikator yang sensitif terhadap pergerakan harga saham, Stochastic Oscillator sering mengeluarkan sinyal palsu yang mengakibatkan kerugian dalam transaksi. Terdapat 9 atribut yang diduga dapat mengidentifikasi apakah suatu sinyal yang keluar dari indikator Stochastic Oscillator merupakan sinyal palsu atau tidak. Tujuan dari penelitian ini adalah melakukan klasifikasi atau deteksi sinyal dengan metode Naïve Bayes dan Bayesian Regularization Neural Network (BRNN), dan kemudian membandingkan tingkat akurasi hasil klasifikasi antara kedua metode. Hasil dari penelitian ini menunjukkan bahwa hanya terdapat 6 atribut yang dapat digunakan untuk mengidentifikasi apakah suatu sinyal yang keluar merupakan sinyal palsu atau tidak, yaitu kondisi IHSG, kondisi high price, kondisi low price, kondisi close price, posisi %K, dan posisi %D, serta tingkat akurasi dari metode Naïve Bayes adalah sebesar 76,92%, sedangkan akurasi dari metode BRNN adalah sebesar 80,77%. Dapat disimpulkan bahwa dalam penelitian ini, metode BRNN lebih baik dibandingkan dengan metode Naïve Bayes untuk mendeteksi sinyal palsu yang keluar dari indikator Stochastic Oscillator. Kata kunci: Stochastic Oscillator, Sinyal Palsu, Klasifikasi, Naïve Bayes, BRNN, Akurasi }, issn = {2339-2541}, pages = {16--25} doi = {10.14710/j.gauss.9.1.16-25}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/27520} }
Refworks Citation Data :
Keputusan untuk membeli atau menjual saham merupakan kunci utama untuk memperoleh keuntungan dalam trading dan investasi. Salah satu indikator yang dapat digunakan dalam menentukan momentum untuk membeli atau menjual saham adalah Stochastic Oscillator. Sebagai indikator yang sensitif terhadap pergerakan harga saham, Stochastic Oscillator sering mengeluarkan sinyal palsu yang mengakibatkan kerugian dalam transaksi. Terdapat 9 atribut yang diduga dapat mengidentifikasi apakah suatu sinyal yang keluar dari indikator Stochastic Oscillator merupakan sinyal palsu atau tidak. Tujuan dari penelitian ini adalah melakukan klasifikasi atau deteksi sinyal dengan metode Naïve Bayes dan Bayesian Regularization Neural Network (BRNN), dan kemudian membandingkan tingkat akurasi hasil klasifikasi antara kedua metode. Hasil dari penelitian ini menunjukkan bahwa hanya terdapat 6 atribut yang dapat digunakan untuk mengidentifikasi apakah suatu sinyal yang keluar merupakan sinyal palsu atau tidak, yaitu kondisi IHSG, kondisi high price, kondisi low price, kondisi close price, posisi %K, dan posisi %D, serta tingkat akurasi dari metode Naïve Bayes adalah sebesar 76,92%, sedangkan akurasi dari metode BRNN adalah sebesar 80,77%. Dapat disimpulkan bahwa dalam penelitian ini, metode BRNN lebih baik dibandingkan dengan metode Naïve Bayes untuk mendeteksi sinyal palsu yang keluar dari indikator Stochastic Oscillator.
Kata kunci: Stochastic Oscillator, Sinyal Palsu, Klasifikasi, Naïve Bayes, BRNN, Akurasi
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics