skip to main content

PERBANDINGAN METODE K–MEANS DAN SELF ORGANIZING MAP (STUDI KASUS: PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA 2015)

*Rachmah Dewi Kusumah  -  , Indonesia
Budi Warsito  -  , Indonesia
Moch. Abdul Mukid  -  , Indonesia
Open Access Copyright 2018 Jurnal Gaussian

Citation Format:
Abstract
Cluster analysis is a process of separating the objects into groups, so that the objects that belong to the same group are similar to each other and different from the other objects in another group. In this study used two method to classify data of  district / city in Central Java based on indicators of Human Development Index (HDI) 2015 are K-Means and Self Organizing Map (SOM) with the number of groups as much as two to seven. Furthermore, the results of both methods were compared using the Davies-Bouldin Index (DBI) values to determine which method is better. Based on the research that has been conducted found that the K-Means (K=4) method works better than SOM (K=2) to classify district / city in Central Java based on indicators of Human Development Index (HDI) as evidenced by the value of the Davies-Bouldin Index (DBI) on K-Means (K=4) of 0.786 is smaller than the value at SOM (K=2) Davies-Bouldin Index (DBI) which is equal to 0.893. Keywords: clustering, HDI, K-Means, SOM, DBI
Fulltext View|Download

Article Metrics:

Last update:

No citation recorded.

Last update:

No citation recorded.