BibTex Citation Data :
@article{J.Gauss19343, author = {Lugas Winastiti and Agus Rusgiyono and Diah Safitri}, title = {PENGGUNAAN REGRESI LOGISTIK BINER DAN ITERATIVE DICHOTOMISER 3 (ID3) DALAM PEMBUATAN KLASIFIKASI STATUS KERJA (Studi Kasus Penduduk Kota Surakarta Tahun 2015)}, journal = {Jurnal Gaussian}, volume = {6}, number = {3}, year = {2017}, keywords = {}, abstract = { Discussing about the macro economy usually discuss about unemployment. Unemployment basically can not be fully eliminated. Unemployment usually symbolized with an employment status of person. In this research, two methods were used in making the classification of employment status in the population of the city of Surakarta in February 2015, the methods are binary logistic regression and Iterative Dichotomiser 3 (ID3) Algorithm. Predictor variables used in determining employment status were age, gender, status in the household, marital status, education and work training. Comparison of the training data and testing data is 60:40. Based on calculations obtained binary logistic regression variables that significantly affect the employment status are age, gender and marital status and the accuracy using testing data is 75%, while the calculations of a decision tree using iterative dichotomiser 3 algorithm the accuracy using testing data is 75%. Keywords: Classification, Iterative Dichotomiser 3 Algorithm, Binary Logistic Regression }, issn = {2339-2541}, pages = {397--405} doi = {10.14710/j.gauss.6.3.397-405}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/19343} }
Refworks Citation Data :
Discussing about the macro economy usually discuss about unemployment. Unemployment basically can not be fully eliminated. Unemployment usually symbolized with an employment status of person. In this research, two methods were used in making the classification of employment status in the population of the city of Surakarta in February 2015, the methods are binary logistic regression and Iterative Dichotomiser 3 (ID3) Algorithm. Predictor variables used in determining employment status were age, gender, status in the household, marital status, education and work training. Comparison of the training data and testing data is 60:40. Based on calculations obtained binary logistic regression variables that significantly affect the employment status are age, gender and marital status and the accuracy using testing data is 75%, while the calculations of a decision tree using iterative dichotomiser 3 algorithm the accuracy using testing data is 75%.
Keywords: Classification, Iterative Dichotomiser 3 Algorithm, Binary Logistic Regression
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics