BibTex Citation Data :
@article{J.Gauss19308, author = {Iantazar Maharsi and Moch. Mukid and Yuciana Wilandari}, title = {PERAMALAN JUMLAH KECELAKAAN DI KOTA SEMARANG TAHUN 2017 MENGGUNAKAN METODE RUNTUN WAKTU (Studi Kasus : Data Jumlah Kecelakaan Lalu Lintas di Kota Semarang Periode Januari 2012 – Desember 2016)}, journal = {Jurnal Gaussian}, volume = {6}, number = {3}, year = {2018}, keywords = {}, abstract = { Accident data from Satlantas Polrestabes Semarang City is known that in 2016 there is an increase in the number of traffic accidents in the Semarang city. In the future the impact of accidents is predicted to be bigger so it is necessary to forecasting. Forecasting is one of the most important elements in decision making, because effective or not a decision generally depends on several factors that can not be seen at the time the decision was taken. In this time study the possible time series model is ARMA (2,2), ARMA (2,1), ARMA (1,2), ARMA (1,1), AR (2), AR (1), MA (2), MA (1). However, after testing, the model used is ARMA (1,1). This model is used because it meets all the assumption requirements that are parameter significant , residual indepedent test, residual normality test and the smallest Mean Square Error value. According to data forecasting results showed the highest number of crashes existed in January of 97 accidents and the lowest in December amounted to 93 accidents, So that the necessary to action from the relevant agencies to cope with the increasing number of traffic accidents in the city of Semarang. Keywords : Time Series Method, ARMA (1,1), Traffic Accident. }, issn = {2339-2541}, pages = {355--364} doi = {10.14710/j.gauss.6.3.355-364}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/19308} }
Refworks Citation Data :
Accident data from Satlantas Polrestabes Semarang City is known that in 2016 there is an increase in the number of traffic accidents in the Semarang city. In the future the impact of accidents is predicted to be bigger so it is necessary to forecasting. Forecasting is one of the most important elements in decision making, because effective or not a decision generally depends on several factors that can not be seen at the time the decision was taken. In this time study the possible time series model is ARMA (2,2), ARMA (2,1), ARMA (1,2), ARMA (1,1), AR (2), AR (1), MA (2), MA (1). However, after testing, the model used is ARMA (1,1). This model is used because it meets all the assumption requirements that are parameter significant , residual indepedent test, residual normality test and the smallest Mean Square Error value. According to data forecasting results showed the highest number of crashes existed in January of 97 accidents and the lowest in December amounted to 93 accidents, So that the necessary to action from the relevant agencies to cope with the increasing number of traffic accidents in the city of Semarang.
Keywords : Time Series Method, ARMA (1,1), Traffic Accident.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics