BibTex Citation Data :
@article{J.Gauss10244, author = {Yogi Pamuji and Diah Safitri and Alan Prahutama}, title = {KLASIFIKASI PENERIMA PROGRAM BERAS MISKIN (RASKIN) DI KABUPATEN WONOSOBO DENGAN METODE SUPPORT VECTOR MACHINE MENGGUNAKAN LibSVM}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {Beras Miskin (Raskin) Program, Classification, Support Vector Machine (SVM), LibSVM, Kernel Function}, abstract = { Beras Miskin (Raskin) Program is a program of social protection, as supporters of other programs such as nutrition improvement, healthy increase, education and productivity improvement of Poor Households. According to Badan Pusat Statistika, there were 14 criteria to determine a household is classified as poor households. Based on these criteria it will be classified of recipient households and non-recipient households of Beras Miskin (Raskin) Program by Support Vector Machine (SVM) method using LibSVM. The concept of classification by SVM is search for the best hyperplane which serves as a separator of two classes of data in the input space. Kernel function is used to convert the data into a higher dimensional space to allow a separation. LibSVM is a package program created by Chih-Chung Chang and Chih-Jen Lin from Department of Computer Science at National Taiwan University. The method used by LibSVM to obtain global solution of duality lagrange problem is decomposition method. To determine the best parameters of kernel function, used k-vold cross validation method and grid search algorithm. In this classification by SVM method using LibSVM, obtain the best accuracy value as 83,1933%, which is the kernel function Radial Basis Function (RBF). Keywords : Beras Miskin (Raskin) Program, Classification, Support Vector Machine (SVM), LibSVM, Kernel Function }, issn = {2339-2541}, pages = {1087--1096} doi = {10.14710/j.gauss.4.4.1087-1096}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10244} }
Refworks Citation Data :
Beras Miskin (Raskin) Program is a program of social protection, as supporters of other programs such as nutrition improvement, healthy increase, education and productivity improvement of Poor Households. According to Badan Pusat Statistika, there were 14 criteria to determine a household is classified as poor households. Based on these criteria it will be classified of recipient households and non-recipient households of Beras Miskin (Raskin) Program by Support Vector Machine (SVM) method using LibSVM. The concept of classification by SVM is search for the best hyperplane which serves as a separator of two classes of data in the input space. Kernel function is used to convert the data into a higher dimensional space to allow a separation. LibSVM is a package program created by Chih-Chung Chang and Chih-Jen Lin from Department of Computer Science at National Taiwan University. The method used by LibSVM to obtain global solution of duality lagrange problem is decomposition method. To determine the best parameters of kernel function, used k-vold cross validation method and grid search algorithm. In this classification by SVM method using LibSVM, obtain the best accuracy value as 83,1933%, which is the kernel function Radial Basis Function (RBF).
Keywords : Beras Miskin (Raskin) Program, Classification, Support Vector Machine (SVM), LibSVM, Kernel Function
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics