1Jurusan Teknik Elektro, Universitas Diponegoro Semarang , Indonesia
2Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia, Indonesia
BibTex Citation Data :
@article{Transient3913, author = {M. Mulyadi and R. Isnanto and Achmad Hidayatno}, title = {SISTEM IDENTIFIKASI TELAPAK TANGAN MENGGUNAKAN EKSTRAKSI CIRI BERBASIS DIMENSI FRAKTAL}, journal = {Transient: Jurnal Ilmiah Teknik Elektro}, volume = {2}, number = {3}, year = {2013}, keywords = {(telapak tangan, Dimensi Fraktal, Box-Counting, Koefisien Korelasi; palmprint, Fractal Dimension, Box-Counting, Correlation Coefficient)}, abstract = { Abstrak Biometrika merupakan pengembangan dari metode dasar identifikasi seseorang dengan menggunakan karakteristik alami manusia sebagai basisnya. Telapak tangan (palmprint) merupakan salah satu organ tubuh manusia yang bisa digunakan sebagai identifikasi karena bersifat unik. Setiap telapak tangan memiliki tekstur yang detail dan unik berdasarkan ciri garis-garis utama (principal-line features) dan ciri garis-garis kusut (wrinkles features), bahkan berbeda antara telapak tangan kanan dan kiri. Telapak tangan juga tidak dapat berubah serta stabil selama berpuluh-puluh tahun, sehingga dapat digunakan dalam sistem identifikasi. Pada penelitian ini proses yang dilakukan untuk identifikasi telapak tangan adalah akuisisi data, pengolahan awal normalisasi intensitas citra hasil segmentasi, ekstraksi ciri dan pencocokkan. Algoritma untuk ekstraksi ciri tekstur telapak tangan adalah Dimensi Fraktal dengan metode Box-Counting, sedangkan untuk pencocokkan ciri data acuan dengan data uji telapak tangan digunakan Koefisien Korelasi. Pengujian dilaksanakan menggunakan program simulasi menggunakan perangkat lunak Matlab 7.12 (2011a). pengenalan terhadap klasifikasi nilai vektor ciri pada setiap telapak tangan diperoleh dari banyaknya nilai pengenalan atau jumlah presentase setiap nilai vektor ciri terhadap nilai parameter yang ditentukan. Presentase pengenalan terbaik adalah 83,3% dari 30 citra uji dari 10 individu dengan 25 citra uji dikenali dengan tepat sedangkan 5 citra uji lainnya dikenali sebagai individu yang salah. Kata-Kunci : telapak tangan, Dimensi Fraktal, Box-Counting, Koefisien Korelasi Abstract Biometrics is a science concerning from the methods for identifying a person which is based on natural characteristics of human. Palmprint is one of the organ of human body that can be used as identification because it is uniqueness. Each palm has a unique detail and texture characteristics based on the main lines (principle-line feature) and tangles characteristics (wrinkles feature), even different between the right and left hand. Palms also can not be changed and stable for decades, so it can be used the identification system. In this research, the identification consist of data acquisition, intensity normalization result of image pre-processing segmentation, feature extraction and classification. The algorithm used for extracting the feature of texture palmprint isFractal Dimension and for classifying the texture characteristic of the textural feature palmprint will be used Correlation Coefficient. Some test were conducted by using the software simulation program Matlab 7:12 (2011a). classification for recognizing feature vector value of iris has been found from the recognized value or total percentage of feature vector iris value to the definite vector target. Best recognition percentage is 83,3% of 30 test images of 10 individuals with 25 test image correctly identified on individual test image, while 5 other individuals as wrong recognized. Keywords : palmprint, Fractal Dimension, Box-Counting, Correlation Coefficient }, issn = {2685-0206}, pages = {751--756} doi = {10.14710/transient.v2i3.751-756}, url = {https://ejournal3.undip.ac.id/index.php/transient/article/view/3913} }
Refworks Citation Data :
Abstrak
Biometrika merupakan pengembangan dari metode dasar identifikasi seseorang dengan menggunakan karakteristik alami manusia sebagai basisnya. Telapak tangan (palmprint) merupakan salah satu organ tubuh manusia yang bisa digunakan sebagai identifikasi karena bersifat unik. Setiap telapak tangan memiliki tekstur yang detail dan unik berdasarkan ciri garis-garis utama (principal-line features) dan ciri garis-garis kusut (wrinkles features), bahkan berbeda antara telapak tangan kanan dan kiri. Telapak tangan juga tidak dapat berubah serta stabil selama berpuluh-puluh tahun, sehingga dapat digunakan dalam sistem identifikasi. Pada penelitian ini proses yang dilakukan untuk identifikasi telapak tangan adalah akuisisi data, pengolahan awal normalisasi intensitas citra hasil segmentasi, ekstraksi ciri dan pencocokkan. Algoritma untuk ekstraksi ciri tekstur telapak tangan adalah Dimensi Fraktal dengan metode Box-Counting, sedangkan untuk pencocokkan ciri data acuan dengan data uji telapak tangan digunakan Koefisien Korelasi. Pengujian dilaksanakan menggunakan program simulasi menggunakan perangkat lunak Matlab 7.12 (2011a). pengenalan terhadap klasifikasi nilai vektor ciri pada setiap telapak tangan diperoleh dari banyaknya nilai pengenalan atau jumlah presentase setiap nilai vektor ciri terhadap nilai parameter yang ditentukan. Presentase pengenalan terbaik adalah 83,3% dari 30 citra uji dari 10 individu dengan 25 citra uji dikenali dengan tepat sedangkan 5 citra uji lainnya dikenali sebagai individu yang salah.
Kata-Kunci : telapak tangan, Dimensi Fraktal, Box-Counting, Koefisien Korelasi
Abstract
Biometrics is a science concerning from the methods for identifying a person which is based on natural characteristics of human. Palmprint is one of the organ of human body that can be used as identification because it is uniqueness. Each palm has a unique detail and texture characteristics based on the main lines (principle-line feature) and tangles characteristics (wrinkles feature), even different between the right and left hand. Palms also can not be changed and stable for decades, so it can be used the identification system. In this research, the identification consist of data acquisition, intensity normalization result of image pre-processing segmentation, feature extraction and classification. The algorithm used for extracting the feature of texture palmprint isFractal Dimension and for classifying the texture characteristic of the textural feature palmprint will be used Correlation Coefficient. Some test were conducted by using the software simulation program Matlab 7:12 (2011a). classification for recognizing feature vector value of iris has been found from the recognized value or total percentage of feature vector iris value to the definite vector target. Best recognition percentage is 83,3% of 30 test images of 10 individuals with 25 test image correctly identified on individual test image, while 5 other individuals as wrong recognized.
Article Metrics:
Last update:
Penulis yang menyerahkan naskah perlu menyetujui bahwa hak cipta dari artikel tersebut akan diserahkan ke TRANSIENT: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro sebagai penerbit jurnal. Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
TRANSIENT: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro dan Editor berusaha keras untuk memastikan bahwa tidak ada data, pendapat, atau pernyataan yang salah atau menyesatkan dipublikasikan di jurnal. Dengan cara apa pun, isi artikel dan iklan yang diterbitkan dalam TRANSIENT: Jurnal Ilmiah Teknik Elektro adalah tanggung jawab tunggal dan eksklusif masing-masing penulis dan pengiklan.
Formulir Transfer Hak Cipta dapat diunduh di sini: [Formulir Transfer Hak Cipta Transient]. Formulir hak cipta harus ditandatangani dan dikirim ke Editor dalam bentuk surat asli, dokumen pindaian atau faks:
Dr. Wahyudi (Ketua Editor)Departemen Teknik Elektro, Universitas Diponegoro, IndonesiaJl. Prof. Sudharto, Tembalang, Semarang 50275 IndonesiaTelepon/Facs: 62-24-7460057Email: transient@elektro.undip.ac.id