slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
Pemodelan Spasio-Temporal Tren Perubahan Penutup Lahan Kota Semarang Tahun 2000 - 2020 | Barbarossa | Teknik PWK (Perencanaan Wilayah Kota) skip to main content

Pemodelan Spasio-Temporal Tren Perubahan Penutup Lahan Kota Semarang Tahun 2000 - 2020

*Ghiffari Barbarossa  -  Department of Urban and Regional Planning, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Anang Wahyu Sejati scopus publons  -  Department of Urban and Regional Planning, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Fenomena urbanisasi merupakan proses transformasi perkotaan yang diyakini menyebabkan  terjadinya perubahan penutup lahan berupa peningkatan lahan terbangun serta menurunnya lahan terbuka hijau. Hal ini berpotensi menurunkan kualitas lingkungan dan kehidupan masyarakat perkotaan. Oleh sebab itu, simulasi pemodelan perubahan penutup lahan menjadi penting untuk dilakukan. Penelitian ini bertujuan untuk memodelkan tren spasio-temporal perubahan penutup lahan Kota Semarang Tahun 2000 – 2020. Kota Semarang dipilih sebagai objek studi sebab ekspansi lahan urban yang terjadi di sana. Penelitian ini dilakukan dengan memanfaatkan data penginderaan jauh dan GIS berbasis Random Forest Classification. Hasil penelitian menemukan bahwa terdapat dua tren pertumbuhan, mengikuti jaringan transportasi di tengah Kota Semarang dan menyebar secara acak pinggir Kota. Selain itu, ditemukan juga tumbuhnya lahan urban di pesisir yang ternyata berpengaruh pada meluasnya badan air yang disebabkan oleh penurunan muka tanah. Hasil penelitian ini diharapkan dapat menjadi rekomendasi dalam perencanaan penataan ruang perkotaan serta penyusunan kebijakan manajemen lahan.
Fulltext View|Download
Keywords: Penutup lahan; tren perubahan; spasio-temporal; Kota Semarang

Article Metrics:

  1. Al-Doski, J., Mansorl, S. B., & Shafri, H. Z. M. (2013). Image classification in remote sensing. Department of Civil Engineering, Faculty of Engineering, University Putra, Malaysia, 3(10)
  2. Anderson, J. R. (1976). A Land Use And Land Cover Classification System For Use With Remote Sensor Data. 2001
  3. Buchori, I., Sugiri, A., Maryono, M., Pramitasari, A., & Pamungkas, I. T. D. (2017). Theorizing spatial dynamics of metropolitan regions: A preliminary study in Java and Madura Islands, Indonesia. Sustainable Cities and Society, 35, 468–482
  4. Chavula, G., Brezonik, P., Bauer, M., & others. (2011). Land use and land cover change (LULC) in the Lake Malawi Drainage Basin, 1982-2005. International Journal of Geosciences, 2(02), 172
  5. Cigna, F., & Tapete, D. (2022). Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of the Total Environment, 811
  6. Crawford, T. W. (2007). Where does the coast sprawl the most? Trajectories of residential development and sprawl in coastal North Carolina, 1971--2000. Landscape and Urban Planning, 83(4), 294–307
  7. Ebrahimy, H., Mirbagheri, B., Matkan, A. A., & Azadbakht, M. (2021). Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data. ISPRS Journal of Photogrammetry and Remote Sensing, 172(December 2020), 17–27. https://doi.org/10.1016/j.isprsjprs.2020.11.024
  8. El Shinawi, A., Kuriqi, A., Zelenakova, M., Vranayova, Z., & Abd-Elaty, I. (2022). Land subsidence and environmental threats in coastal aquifers under sea level rise and over-pumping stress. Journal of Hydrology, 608(November 2021). https://doi.org/10.1016/j.jhydrol.2022.127607
  9. Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486
  10. Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  11. Imam, E. (2019). Geology Module : Colour Composite Images and Visual Image Interpretation. (January)
  12. Kogo, B. K., Kumar, L., & Koech, R. (2021). Analysis of spatio-temporal dynamics of land use and cover changes in Western Kenya. Geocarto International, 36(4), 376–391
  13. Koomen, E., & Borsboom-van Beurden, J. (2011). Land-use Modelling in Planning Practice. Springer Nature
  14. Langat, P. K., Kumar, L., Koech, R., & Ghosh, M. K. (2019). Monitoring of land use/land-cover dynamics using remote sensing: A case of Tana River Basin, Kenya. Geocarto International, 1–19
  15. Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222
  16. Pradhan, R. P., Arvin, M. B., & Nair, M. (2020). Urbanization , transportation infrastructure , ICT , and economic growth : A temporal causal analysis. 115(September 2019)
  17. Rahnama, M. R. (2021). Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016-2030. Sustainable Cities and Society, 64(October 2020), 1–11
  18. Rodriguez-Galiano, V. F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., & Jeganathan, C. (2012). Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121, 93–107
  19. Sejati, A. W., Buchori, I., & Rudiarto, I. (2019). The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 46(July 2018). https://doi.org/10.1016/j.scs.2019.101432
  20. Stehman, S. V. (2001). Statistical rigor and practical utility in thematic map accuracy assessment. Photogrammetric Engineering and Remote Sensing, 67(6), 727–734
  21. Wang, S. W., Munkhnasan, L., & Lee, W.-K. (2020). Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges, 2(November 2020), 100017. https://doi.org/10.1016/j.envc.2020.100017
  22. Wang, W.-Z., Liu, L.-C., Liao, H., & Wei, Y.-M. (2020). Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy, 151, 112171
  23. Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., & Dewitz, J. A. (2021). Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sensing of Environment, 257(January). https://doi.org/10.1016/j.rse.2021.112357

Last update:

No citation recorded.

Last update:

No citation recorded.