skip to main content

Analisis Kekuatan Torsional Variasi Material Sandwich Plate System pada Cargo Hold Kapal Container DWT 7537

*Dimas Bosty Alfarizki  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus Undip Tembalang, Semarang, Indonesia 50275, Indonesia
Ahmad Fauzan Zakki scopus  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus Undip Tembalang, Semarang, Indonesia 50275, Indonesia
Hartono Yudo  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Jl. Prof. Soedarto, SH, Kampus Undip Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Inovasi dalam desain struktur kapal bertujuan untuk menghasilkan konstruksi yang ringan, kuat, dan efisien. Salah satu teknologi yang digunakan adalah Sandwich Plate System (SPS), yaitu sistem pelat berlapis dengan material inti yang berfungsi meningkatkan kekuatan tanpa menambah berat secara signifikan. Penelitian ini bertujuan untuk menganalisis kekuatan torsional struktur Cargo hold kapal menggunakan variasi material inti pada SPS. Simulasi numerik dilakukan dengan metode elemen hingga (FEM) menggunakan perangkat lunak Abaqus CAE. Material inti yang diteliti berupa elastomer dan synthetic resin, serta dibandingkan dengan struktur konvensional. Hasil analisis menunjukkan bahwa SPS dengan inti elastomer menghasilkan tegangan von Mises sebesar 3,87  MPa dan defleksi 29,64 mm. Sementara itu, SPS dengan inti synthetic resin menghasilkan tegangan 3,86 MPa dan defleksi 29,64 mm. Seluruh konfigurasi tersebut memenuhi standar kekuatan struktur berdasarkan kriteria dari Biro Klasifikasi Indonesia (BKI). Dengan demikian, penggunaan SPS dengan material inti elastomer maupun synthetic resin dinilai layak sebagai alternatif pengganti pelat baja konvensional dalam struktur kapal modern.

Fulltext View|Download
Keywords: FEM; Sandwich Plate System; Strength Analysis; Composite Structure
  1. D. Zenkert, “AN INTRODUCTION TO SANDWICH STRUCTURES,” 1995
  2. J. Cheloni, M. Silveira, E. S. Najar Lopes, and L. Silva, “Fatigue and Failure Analysis of Sandwich Composites using Two Types of Cross-Ply Glass Fibers Laminates and Epoxy Resin,” J. Res. Updat. Polym. Sci., vol. 11, pp. 36–44, 2022, doi: 10.6000/1929-5995.2022.11.06
  3. R. F. Gibson, “A mechanics of materials/fracture mechanics analysis of core shear failure in foam core composite sandwich beams,” J. Sandw. Struct. Mater., vol. 13, no. 1, pp. 83–95, 2011, doi: 10.1177/1099636209359843
  4. T. N. Bitzer, Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing. Springer Netherlands, 1997
  5. “Sandwich Plate System (SPS) for new ships - A technical update,” Nav. Archit., no. JUL./AUG., pp. 9 – 10, 2004, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33644995093&partnerID=40&md5=c76dc7a539190e0047cd0b9e64598f5c
  6. J. Y. R. Liew, M.-X. Xiong, and B.-L. Lai, Design of Steel-Concrete Composite Structures Using High-Strength Materials. 2021
  7. N. Momčilović and M. Motok, “Estimation of ship lightweight reduction by means of application of sandwich plate system,” FME Trans., vol. 37, no. 3, pp. 123–128, 2009
  8. E. Altunsaray and N. Gökdeniz, “A Practical Approach to the Design of Long Sandwich Plates,” vol. 226, no. 2, pp. 80–90, 2002, doi: 10.54926/jnamt.2025.249
  9. Llyod’s Register, “Provosional rules for the application of sandwich panel construction to ship structure,” 2015
  10. H. Isworo and P. R. Ansyah, “Buku Ajar Metode Elemen Hingga,” p. 68, 2018
  11. Ramakrishnan and S. Kumar, “Applications of Sandwich Plate System for Ship Structures,” IOSR J. Mech. Civ. Eng., pp. 83–90, 2016
  12. M. Zare and R. Sedaghati, “Topology optimization of adaptive sandwich plates with magnetorheological core layer for improved vibration attenuation,” J. Sandw. Struct. Mater., vol. 26, pp. 1312–1340, 2024, [Online]. Available: https://api.semanticscholar.org/CorpusID:272238954
  13. J. Abedin, F. Franklin, and S. M. I. Mahmud, “Validation of the Hull Girder Deflection of a Multipurpose Cargo Ship,” ASEAN Eng. J., vol. 14, no. 2, pp. 183–193, 2024, doi: 10.11113/aej.V14.21054
  14. H. Ju, “Torsional Strength of Reinforced Concrete Beams Subjected to Combined Loads,” J. Korea Concr. Inst., vol. 35, no. 6, pp. 611 – 623, 2023, doi: 10.4334/JKCI.2023.35.6.611
  15. J. Nie, L. Tang, and C. S. Cai, “Performance of steel-concrete composite beams under combined bending and torsion,” J. Struct. Eng., vol. 135, no. 9, pp. 1048 – 1057, 2009, doi: 10.1061/(ASCE)ST.1943-541X.0000042
  16. J. Cui, D. Wang, and N. Ma, “Container ship ultimate strength subject to combined bending and torsional moments considering corrosion effects,” in Proceedings of the International Offshore and Polar Engineering Conference, 2015, vol. 2015-Janua, pp. 1129 – 1134, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944674240&partnerID=40&md5=25b22fc8de6da1b52066ab2f98fc30f2
  17. Q. Wang, C. Wang, J. Wu, and D. Wang, “Investigations on the torsional failure characteristics of the global hull girder with large deck openings,” Ocean Eng., vol. 198, p. 107007, Feb. 2020, doi: 10.1016/j.oceaneng.2020.107007
  18. C. Wang, J. Wu, and D. Wang, “Design similar scale model of a 10,000 TEU container ship through combined ultimate longitudinal bending and torsion analysis,” Appl. Ocean Res., vol. 88, pp. 1–14, 2019, doi: https://doi.org/10.1016/j.apor.2019.03.016
  19. H. Wu, W. Wu, J. Gan, and H. Sun, “Ultimate strength analysis of a river-sea ship under combined action of torsion and bending,” in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2013, vol. 2 B, doi: 10.1115/OMAE2013-11007
  20. K. Iijima, T. Shigemi, R. Miyake, and A. Kumano, “A practical method for torsional strength assessment of container ship structures,” Mar. Struct., vol. 17, no. 5, pp. 355 – 384, 2004, doi: 10.1016/j.marstruc.2004.08.011
  21. N. Baroiu, E. F. Beznea, G. Coman, and I. Chirica, “Static and thermal behaviour of ship structure sandwich panels,” Therm. Sci., vol. 25, no. 2 Part A, pp. 1109–1121, 2021, doi: 10.2298/TSCI190531463B
  22. Z. Huang, H. Peng, X. Wang, and F. Chu, “Modeling and Vibration Control of Sandwich Composite Plates,” Materials (Basel)., vol. 16, no. 3, 2023, doi: 10.3390/ma16030896
  23. A. Zubaydi, A. Budipriyanto, E. Utomo, and S. H. Sujiatanti, “Development of sandwich core material for deck structure,” Int. J. Civ. Eng. Technol., vol. 9, no. 11, pp. 2551 – 2560, 2018, doi: 10.12962/j23546026.y2017i6.3237
  24. D. Elmalich and O. Rabinovitch, “Twist in soft-core sandwich plates,” J. Sandw. Struct. Mater., vol. 16, no. 6, pp. 577–613, 2014, doi: 10.1177/1099636214547490
  25. S. IRFAN and F. SIDDIQUI, “A review of recent advancements in finite element formulation for sandwich plates,” Chinese J. Aeronaut., vol. 32, no. 4, pp. 785–798, 2019, doi: 10.1016/j.cja.2018.11.011
  26. N. Ahn and K. Lee, “A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces,” Struct. Eng. Mech., vol. 40, no. 4, pp. 501 – 515, 2011, doi: 10.12989/sem.2011.40.4.501
  27. H. Siswanti, M. Musta’in, A. M. Mulananda, A. Nasrudin, and D. R. Aldara, “Influence of faceplate thickness reduction on the strength of sandwich structure under static compression loading,” in IOP Conference Series: Earth and Environmental Science, 2024, vol. 1423, no. 1, doi: 10.1088/1755-1315/1423/1/012034
  28. C. Labriola and V. Tagarielli, “ARPRO®: A new structural core material for the yacht industry,” in 18th Chesapeake Sailing Yacht Symposium, CSYS, 2007, pp. 129 – 136, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77950466488&partnerID=40&md5=f78272eb2f07a2b5adafd9d0bf14d0af
  29. A. Uzal, F. O. Sonmez, F. E. Oz, K. Cinar, and N. Ersoy, “A composite sandwich plate with a novel core design,” Compos. Struct., vol. 193, pp. 198–211, 2018, doi: 10.1016/j.compstruct.2018.03.047
  30. P. Nampally, A. T. Karttunen, and J. N. Reddy, “Nonlinear finite element analysis of lattice core sandwich plates,” Int. J. Non. Linear. Mech., vol. 121, 2020, doi: 10.1016/j.ijnonlinmec.2020.103423
  31. A. Ismail, A. Zubaydi, B. Piscesa, T. Tuswan, and R. C. Ariesta, “STUDY of SANDWICH PANEL APPLICATION on SIDE HULL of CRUDE OIL TANKER,” J. Appl. Eng. Sci., vol. 19, no. 4, pp. 1090–1098, 2021, doi: 10.5937/jaes0-30373
  32. Yuwantoro, “Analisa Kekuatan Penerapan Sandwich Plate System (SPS) Pada Tank Deck Kapal Landing Ship Tank (LST) 7000 DWT,” J. Tek. Perkapalan, vol. 7, no. 4, pp. 420–429, 2019
  33. B. K. Indonesia, “RULES FOR HULL,” Rules Hull 2019 ed., vol. II, p. Page 20–7, 2019

Last update:

No citation recorded.

Last update:

No citation recorded.