skip to main content

Analisis Thrust, Torsi, dan Efisiensi Propeller B Series menggunakan Metode Design of Experiments (DOE)

*Kanaka Balindra Santoso  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Berlian Arswendo Adietya  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Hartono Yudo  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Mahendra Indiaryanto  -  Research Center For Hydrodynamics Technology, Tangerang, 15314, Indonesia, Indonesia

Citation Format:
Abstract
Penekanan emisi dalam lingkup industri maritim menjadi suatu tujuan bersama sebagai upaya mempertahankan kondisi lingkungan ditandai dengan ditetapkannya berbagai regulasi hukum internasional terkait tuntutan penurunan emisi maritim, sehingga dibutuhkan solusi dalam memaksimalkan efisiensi energi salah satunya melalui pengoptimalan desain sistem propulsi pada kapal sehingga efisiensi bahan bakar dan kinerja mesin kapal dapat dioptimalkan, Penelitian ini menganalisis suatu alternatif metode perhitungan dalam memprediksi nilai thrust, torsi, dan efisiensi propeller kapal displacement yang menggunakan propeller jenis b-series dengan metode design of experimental. Faktor-faktor yang mempengaruhi perhitungan performa propeller seperti jumlah daun, pitch/diameter, rasio luasan daun, dan advance coefficient  divariasikan membentuk suatu perhitungan regresi yang menjadi alternatif dari metode perhitungan thrust, torsi, dan efisiensi propeller melalui basis data grafik diagram open water. Hasil dari perhitungan nilai performa propeller menunjukan adanya selisih tertinggi sebesar 6% antara perhitungan regresi yang telah dibuat dan pengujian CFD terhadap propeller model, serta selisih tertinggi sebesar 4% antara perhitungan regresi dengan perhitungan grafik diagram open water, dengan hasil tersebut perhitungan regresi menggunakan metode design of experimental ini dapat menjadi suatu metode yang dapat dipertimbangkan sebagai alternatif dalam memprediksi nilai thrust, torsi, dan efisiensi kapal yang menggunakan propeller tipe b-series.
Fulltext View|Download
Keywords: Design Of Experimental; Propeller Performance; Regression Equation; Wageningen B Series
  1. “EEXI _ Energy Efficiency Existing Ship Index”, Accessed: Feb. 23, 2025. [Online]. Available: https://www.dnv.com/maritime/insights/topics/eexi/
  2. M. Bayraktar and O. Yuksel, “A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations,” Ocean Eng., vol. 278, Jun. 2023, doi: 10.1016/j.oceaneng.2023.114295
  3. A. TOKUŞLU, “Analyzing the Energy Efficiency Design Index (EEDI) performance of a container ship,” Int. J. Environ. Geoinformatics, vol. 7, no. 2, pp. 114–119, Aug. 2020, doi: 10.30897/ijegeo.703255
  4. V. Pelić, O. Bukovac, R. Radonja, and N. Degiuli, “The Impact of Slow Steaming on Fuel Consumption and CO2 Emissions of a Container Ship,” J. Mar. Sci. Eng., vol. 11, no. 3, Mar. 2023, doi: 10.3390/jmse11030675
  5. Y. Xiao, Q. Li, J. Zheng, X. Liu, Y. Huangfu, and Z. peng Li, “Design and control studies of six-phase interleaved boost converter for integrated energy efficiency improvement of green ship,” J. Energy Storage, vol. 96, Aug. 2024, doi: 10.1016/j.est.2024.112549
  6. H. Kong and H. Zhao, “A Review of Energy Management Strategies for Ship Hybrid Power Systems,” International Journal of Education and Humanities, vol. 19, no. 3, pp. 41–47, May 2025. doi: 10.54097/tv814c06
  7. A. Vázquez-Santos, N. Camacho-Zamora, J. Hernández-Hernández, A. L. Herrera-May, L. del C. Santos-Cortes, and M. E. Tejeda-del-Cueto, “Numerical Analysis and Validation of an Optimized B-Series Marine Propeller Based on NSGA-II Constrained by Cavitation,” J. Mar. Sci. Eng., vol. 12, no. 2, Feb. 2024, doi: 10.3390/jmse12020205
  8. X. Liu, Q. Yao, C. Zhu, and H. Yang, “Optimization of wake propeller based on Gaussian approximation and NSGA-II,” Chinese J. Sh. Res., vol. 18, no. 4, pp. 197–205, Aug. 2023, doi: 10.19693/j.issn.1673-3185.02892
  9. B. Bacalja Bašić, M. Krčum, and Z. Jurić, “Propeller Optimization in Marine Power Systems: Exploring Its Contribution and Correlation with Renewable Energy Solutions,” J. Mar. Sci. Eng., vol. 12, no. 5, May 2024, doi: 10.3390/jmse12050843
  10. Z. Yang, W. Qu, and J. Zhuo, “Optimization of Energy Consumption in Ship Propulsion Control under Severe Sea Conditions,” J. Mar. Sci. Eng., vol. 12, no. 9, Sep. 2024, doi: 10.3390/jmse12091461
  11. S. A. Chavan, A. Bhattacharyya, and O. P. Sha, “Open water performance of B-Series marine propeller s in tandem configurations,” Ocean Eng., vol. 242, Dec. 2021, doi: 10.1016/j.oceaneng.2021.110158
  12. M. Tadros and E. Boulougouris, “Performance Assessment of B-Series Marine Propeller s with Cupping and Face Camber Ratio Using Machine Learning Techniques,” J. Mar. Sci. Eng., vol. 13, no. 7, p. 1345, Jul. 2025, doi: 10.3390/jmse13071345
  13. D. Anevlavi, S. Zafeiris, G. Papadakis, and K. Belibassakis, “Efficiency Enhancement of Marine Propeller s via Reformation of Blade Tip-Rake Distribution,” J. Mar. Sci. Eng., vol. 11, no. 11, Nov. 2023, doi: 10.3390/jmse11112179
  14. C. Yin, C. K. Rosenvinge, M. P. Sandland, A. Ehlers, and K. W. Shin, “Improve Ship Propeller Efficiency via Optimum Design of Propeller Boss Cap Fins,” Energies, vol. 16, no. 3, Feb. 2023, doi: 10.3390/en16031247
  15. B. A. Adietya, I. K. A. P. Utama, W. D. Aryawan, and Sutiyo, “CFD Analysis into the Effect of using Propeller Boss Cap Fins (PBCF) on Open and Ducted Propeller s, Case Study with Propeller B-Series and Kaplan-Series,” CFD Lett., vol. 14, no. 4, pp. 32–42, Apr. 2022, doi: 10.37934/CFDl.14.4.3242
  16. A. Ivagnes, N. Demo, and G. Rozza, “A Shape Optimization Pipeline for Marine Propeller s by means of Reduced Order Modeling Techniques,” Jan. 2024, doi: 10.1002/nme.7426
  17. M. Tadros, M. Ventura, and C. G. Soares, “Design of propeller series optimizing fuel consumption and propeller efficiency,” J. Mar. Sci. Eng., vol. 9, no. 11, Nov. 2021, doi: 10.3390/jmse9111226
  18. J. Hasil et al., “JURNAL TEKNIK PERKAPALAN,” J. Tek. Perkapalan, vol. 8, no. 3, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/nava
  19. B. A. Adietya, M. Indiaryanto, S. S, and C. Kusuma, “DIMENSIONAL ANALYSIS AND EXPERIMENTAL DESIGN FOR PREDICTING THE CALCULATION OF THE VALUE OF THE TORQUE COEFFICIENT ON PROPELLER B-SERIES, CASE STUDY OF B3-50 AND B5-80,” J. Mar. Sci. Technol., vol. 3, no. 3, pp. 73–78, Mar. 2023, doi: 10.12962/j27745449.v3i3.581
  20. Suratno, I. M. Ariana, and B. Cahyono, “Optimization of Propeller Design Through Polynomial Approach to Optimize the Ship Energy Efficiency,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Sep. 2020. doi: 10.1088/1755-1315/557/1/012051
  21. L. Birk, “Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance
  22. and Propulsion. John Wiley & Sons., 2019
  23. Y. Wang et al., “Effect of Blade Number on Tip Vortex Cavitation of Propeller ,” J. Mar. Sci. Eng., vol. 13, no. 5, 2025, doi: 10.3390/jmse13050915
  24. M. D. Arifin, D. Faturachman, F. Octaviani, and K. A. Sulaeman, “Analysis of the Effect of Changes in Pitch Ratio and Number of Blades on Cavitation on CPP,” Int. J. Mar. Eng. Innov. Res., vol. 5, no. 4, pp. 255–264, 2020, doi: 10.12962/j25481479.v5i4.8285
  25. E. Coşkun and M. H. Doğru, “Investigation of the hub diameter effect on propeller thrust,” Int. J. Mater. Eng. Technol., vol. 2022, no. 1, pp. 43–47, 2021, [Online]. Available: http://dergipark.gov.tr/tijmet
  26. D. A. . Hudson, A. F. . Molland, and S. R. . Turnock, Ship Resistance and Propulsion : Practical Estimation of Propulsive Power. Cambridge University Press, 2011
  27. D. C. . Montgomery, Design and analysis of experiments. John Wiley & Sons, Inc., 2013. Accessed: Jan. 08, 2025. [Online]. Available: https://faculty.ksu.edu.sa/sites/default/files/douglas_c._montgomery-design_and_analysis_of_experiments-wiley_2012_edition_8.pdf
  28. R. Fontana, A. Molena, L. Pegoraro, and L. Salmaso, “Design of experiments and machine learning with application to industrial experiments,” Stat. Pap., vol. 64, no. 4, pp. 1251–1274, 2023, doi: 10.1007/s00362-023-01437-w
  29. D. Montgomery and E. Peck, “INTRODUCTION TO LINEAR REGRESSION ANALYSIS,” Feb. 2021. Accessed: Jan. 08, 2025. [Online]. Available: https://content.e-bookshelf.de/media/reading/L-16125104-1a3a7c5bd1.pdf
  30. Y. C. Kim, K. S. Kim, S. Yeon, Y. Y. Lee, G. Do Kim, and M. Kim, “Power Prediction Method for Ships Using Data Regression Models,” J. Mar. Sci. Eng., vol. 11, no. 10, 2023, doi: 10.3390/jmse11101961
  31. D. C. Montgomery and J. Wiley, “Sixth Edition I ntroduction to Statistical Quality Control.” John Wiley & Sons, Inc., 2009
  32. M. Alkiayat, “A Practical Guide to Creating a Pareto Chart as a Quality Improvement Tool,” Glob. J. Qual. Saf. Healthc., vol. 4, no. 2, pp. 83–84, 2021, doi: 10.36401/jqsh-21-x1
  33. A. Kwilinski and M. Kardas, “the Role of the Pareto Principle in Quality Management Within Industry 4.0: a Comprehensive Bibliometric Analysis,” Virtual Econ., vol. 7, no. 3, pp. 7–24, 2024, doi: 10.34021/ve.2024.07.03(1)
  34. M. M. Bernitsas, et al., “KT, KQ and Efficiency Curves for the Wageningen B-series Propeller s,” University of Michigan, 1981
  35. J.S. Carlton, “Marine Propeller s and Propulsion.”, Second Edition, 2007, https://doi-org.proxy.undip.ac.id/10.1016/B978-0-7506-8150-6.X5000-1
  36. E. V. . Lewis, Principles of naval architecture. Society of Naval Architects and Marine Engineers, 1989
  37. M.W.C. Oosterveld, “Further computer-analyzed data of the Wageningen B-screw series,” International Shipbuilding Progress. 1975;22(251):251-262. doi: 10.3233/ISP-1975-2225102
  38. T.J. Chung, “Computational Fluid Dynamics, Second Edition,” Sep. 2010. [Online]. Available: http://www.uah.edu/CFD

Last update:

No citation recorded.

Last update:

No citation recorded.