skip to main content

ANALISIS DESAIN AIR PRESSURE TANK UNTUK RIG UJI GENERATOR PLASMA

*Hafizh Falih Fadhlurrohman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Susilo Adi Widyanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mochammad Ariyanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penerapan sistem pembakaran berbasis plasma pada pembangkit listrik tenaga panas merupakan strategi repowering yang bertujuan meningkatkan efisiensi, menekan emisi, dan mengurangi sisa bahan bakar yang tidak terbakar. Dalam sistem ini, bejana tekan berperan penting sebagai air pressure tank yang menyalurkan udara bertekanan guna menjaga kestabilan nyala plasma dan mengatur aliran bahan bakar. Mengingat potensi risikonya, desain bejana tekan harus mengikuti standar keselamatan internasional seperti ASME BPVC Section VIII Division 1. Penelitian ini merancang dan menganalisis tangki bertekanan berdasarkan spesifikasi teknis menggunakan simulasi SolidWorks Static dengan pembebanan tekanan, massa fluida, dan temperatur desain. Hasil simulasi menunjukkan displacement maksimum 0,196 mm, tegangan Von Mises 117,510 MPa, dan factor of safety minimum 2,1. Perbandingan antara hasil numerik dan analitik menunjukkan error di bawah 5%, menandakan bahwa desain tangki memenuhi batas stress allowance serta memiliki keandalan struktur sesuai standar.

Fulltext View|Download
Keywords: asme; bejana tekan; finitie element method; keandalan struktur
  1. Messerle, V. E., & Ustimenko, A. B. (2024). Thermodynamic and kinetic modeling and experiment on plasma ignition of pulverized high-ash coal. Applications in Energy and Combustion Science, 17
  2. Messerle, V. E., Karpenko, E. I., & Ustimenko, A. B. (2014). Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modeling and full-scale test. Fuel, 126, 294–300
  3. M, S. P., M, T., T, M., & M, V. R. (2025). Optimization of tail beam configurations in pressure vessel skirts for enhanced structural integrity. Results in Engineering, 27
  4. Niranjana, S. J., Patel, S. V., & Dubey, A. K. (2018). Design and Analysis of Vertical Pressure Vessel using ASME Code and FEA Technique. IOP Conference Series: Materials Science and Engineering, 376(1)
  5. Chapai, S. (2023). Local stress analysis of tailing lugs in a vertical pressure vessel. International Journal of Pressure Vessels and Piping, 203
  6. SECTION VIII R ules for Construction of Pressure Vessels 2015 ASME Boiler and Pressure Vessel Code An International Code. (2015)
  7. Agustiawan, Iwan., Firmansjah .E., & Sugiri. (2022). Perancangan Air Pressure Tank d engan Bantuan PVElite Software U ntuk Kebutuhan Praktikum Hidrolik dan Pneumatik. Jurnal Rekayasa Energi dan Mekanika, 106-117
  8. Toudehdehghan, A., & Hong, T. W. (2019). A critical review and analysis of pressure vessel structures. IOP Conference Series: Materials Science and Engineering, 469(1)
  9. Křivý, V. (2012). Design of corrosion allowances on structures from weathering steel. Procedia Engineering, 40, 235–240
  10. Dwijayanti, A., Kolmetz, K., Box, P. O., Bahru, B. J., Bahru, J., & Malaysia, W. (n.d.). PRESSURE VESSEL SELECTION, SIZING AND TROUBLESHOOTING Kolmetz Handbook Of Process Equipment Design KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions Solutions, Standards and Software Kolmetz Handbook Of Process Equipment Design PRESSURE VESSEL SELECTION, SIZING AND TROUBLESHOOTING(ENGINEERINGDESIGNGUIDELINE)

Last update:

No citation recorded.

Last update:

No citation recorded.