skip to main content

RANCANG BANGUN KONTROLER PID PADA EKSOSKELETON LOWER-LIMB SENDI PAHA

*Nicolas Arthur Utomo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mochammad Ariyanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Munadi Munadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini mengembangkan prototipe eksoskeleton tungkai bawah cable-driven terkontrol PID sebagai proof of concept untuk asistensi berjalan bagi lansia dengan pelemahan otot. Tuning PID (ZN awal Kp=12.0, Ki=18.81, Kd=1.91; final Kp=12.0, Ki=1.88, Kd=1.91) dievaluasi dengan membandingkan pola sudut paha baseline vs eksoskeleton saat berjalan/naik tangga (RMSE, Pearson, DTW). Hasil menunjukkan eksoskeleton mengikuti pola dasar (r>0.95), namun dengan deviasi moderat (RMSE~6.2°) dan keterbatasan signifikan (overshoot ~5.5%, osilasi PWM -60, limitasi ekstensi) akibat arsitektur kontroler awal yang suboptimal. Disimpulkan bahwa konsep dasar terbukti, namun refactoring kode kontroler mutlak diperlukan untuk performa optimal.

Fulltext View|Download
Keywords: analisis gait; cable-driven; dtw; eksoskeleton; kontrol pid
  1. E. Pantelaki, E. Maggi, and D. Crotti, ‘Mobility impact and well-being in later life: A multidisciplinary systematic review’, Research in Transportation Economics, vol. 86, May 2021, doi: 10.1016/j.retrec.2020.100975
  2. W. Pirker and R. Katzenschlager, ‘Gait disorders in adults and the elderly: A clinical guide’, Wien Klin Wochenschr, vol. 129, no. 3–4, pp. 81–95, 2017, doi: 10.1007/s00508-016-1096-4
  3. N. Zhang and Q. Yang, ‘Public transport inclusion and active aging: A systematic review on elderly mobility’, Apr. 01, 2024, KeAi Communications Co. doi: 10.1016/j.jtte.2024.04.001
  4. S. K. Hasan and A. K. Dhingra, ‘Performance verification of different control schemes in human lower extremity rehabilitation robot’, Results in Control and Optimization, vol. 4, no. June, p. 100028, 2021, doi: 10.1016/j.rico.2021.100028
  5. S. An, E. Song, H. Choi, and K. Kong, ‘Measurement of Force Myography in Level Gait and Stair Gait’, in IFAC-PapersOnLine, Elsevier B.V., Sep. 2022, pp. 484–489. doi: 10.1016/j.ifacol.2022.10.559
  6. M. S. Amiri, R. Ramli, and M. F. Ibrahim, ‘Hybrid design of PID controller for four DoF lower limb exoskeleton’, Appl Math Model, vol. 72, pp. 17–27, 2019, doi: 10.1016/j.apm.2019.03.002
  7. L. Sun, A. Deng, H. Wang, Y. Zhou, and Y. Song, ‘A soft exoskeleton for hip extension and flexion assistance based on reinforcement learning control’, Sci Rep, vol. 15, no. 1, pp. 1–18, 2025, doi: 10.1038/s41598-025-89764-w
  8. H. Dhiman and R. Kumar, ‘Measurement : Digitalization An Internet of Things-enabled smart glove for brain stroke rehabilitation’, Measurement: Digitalization, vol. 1, no. April, p. 100001, 2025, doi: 10.1016/j.meadig.2025.100001
  9. L. Morris, R. S. Diteesawat, N. Rahman, A. Turton, M. Cramp, and J. Rossiter, ‘The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions’, Dec. 01, 2023, BioMed Central Ltd. doi: 10.1186/s12984-022-01122-3
  10. D. Pan, F. Gao, Y. Miao, and R. Cao, ‘Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms’, Advances in Engineering Software, vol. 79, pp. 36–46, 2015, doi: 10.1016/j.advengsoft.2014.09.005

Last update:

No citation recorded.

Last update:

No citation recorded.