skip to main content

PENGARUH VARIASI OFFSET TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA MATERIAL AA6061 HASIL PENGELASAN ONE STEP DOUBLE SIDE FRICTION STIR WELDING

*Elroy Efodiarlo Umbu Lolo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sulardjaka Sulardjaka  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Norman Iskandar  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Paduan aluminium seri 6000, khususnya tipe AA6061, banyak dimanfaatkan pada sektor otomotif, kedirgantaraan, dan konstruksi teknik karena perpaduan sifatnya yang unggul. Namun, proses penyambungan material ini tidaklah mudah, karena rentan mengalami berbagai cacat pengelasan apabila menggunakan metode pengelasan fusi konvensional. Friction Stir Welding (FSW) hadir sebagai solusi yang mampu menghasilkan sambungan dengan kualitas tinggi tanpa mencairkan logam dasar. Penelitian ini bertujuan untuk menganalisis pengaruh variasi offset terhadap kekuatan tarik dan kekerasan pada spesimen AA6061-T6 hasil pengelasan one-step double side friction stir welding. Variasi offset yang digunakan adalah 2 mm dengan kecepatan rotasi pahat 1500 rpm menggunakan pahat berbentuk lingkaran. Pengujian yang dilakukan meliputi pengujian, mikrografi, kekerasan Vickers, dan tarik, Hasil penelitian menunjukkan bahwa offset 2 mm menghasilkan sambungan dengan kualitas yang baik. Struktur mikro pada offset 2 mm menampilkan butir yang halus dan seragam di zona aduk hasil rekristalisasi dinamis. Distribusi kekerasan offset 2 mm homogen dengan nilai sekitar 70 VHN di zona aduk. Kekuatan tarik maksimum offset 2 mm didapatkan sebesar 148 MPa dan kekuatan luluhnya sebesar 108 MPa. Secara keseluruhan, offset 2 mm direkomendasikan untuk aplikasi komponen struktural dengan beban siklik berulang karena memberikan keseimbangan optimal antara kekuatan statis dan ketahanan lelah.

Fulltext View|Download
Keywords: aa6061; double side friction stir welding; offset; uji kekerasan; uji tarik
  1. Callister, W.D., & Rethwisch, D.G. (2020). MATERIALS SCIENCE AND ENGINEERING: An introduction. WILEY
  2. Campbell, F. C. (Ed.). (2011). Joining: Understanding the basics. ASM International
  3. Chandana, R., & Saraswathamma, K. (2023). Impact of tool pin profiles in friction stir welding process-A review. Materials Today: Proceedings, 76, 602–606. https://doi.org/10.1016/j.matpr.2022.12.097
  4. Fauzan Adzima A, & Abd Rahim. (2018). ANALISIS SIFAT MEKANIS DAN MIKROSTRUKTUR PADA SAMBUNGAN PENGELASAN DISSIMILAR FRICTION STIR WELDING (FSW) ALUMINIUM AA 6061 DENGAN ALUMINIUM AA 5052 [POLITEKNIK NEGERI UJUNG PANDANG]
  5. Feng, A. H., Chen, D. L., & Ma, Z. Y. (2010). Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded 6061 Aluminum Alloy. Metallurgical and Materials Transactions A, 41(10), 2626–2641. https://doi.org/10.1007/s11661-010-0279-2
  6. Ghiasvand, A., Yavari, M., Tomków, J., Grimaldo Guerrero, J., Kheradmandan, H., Dorofeev, A., Memon, S., & Derazkola, H. (2021). Investigation of Mechanical and Microstructural Properties of Welded Specimens of AA6061-T6 Alloy with Friction Stir Welding and Parallel-Friction Stir Welding Methods. Materials, 14(20), 6003. https://doi.org/10.3390/ma14206003
  7. Hao, L., Jia, R., Zhai, X., Zhang, H., & Hou, J. (2020). Effect of Friction Stir Welding Parameters on Microstructure and Properties of Welded 5083 Aluminium Alloy. Journal of Nanoscience and Nanotechnology, 20(8), 5055–5063. https://doi.org/10.1166/jnn.2020.18502
  8. Hejazi, I., & Mirsalehi, S. E. (2016). Effect of pin penetration depth on double-sided friction stir welded joints of AA6061-T913 alloy. Transactions of Nonferrous Metals Society of China, 26(3), 676–683. https://doi.org/10.1016/S1003-6326(16)64158-4
  9. Hellier, A. K., Chaphalkar, P. P., & Prusty, G. B. (2017). Fracture Toughness Measurement for Aluminium 6061-T6 using Notched Round Bars. https://www.researchgate.net/publication/331887724_Fracture_Toughness_Measurement_for_Aluminium_6061-T6_using_Notched_Round_Bars
  10. Hendrato, Azka, M., Muslih, M. R., Apriansyah, R., Salman, N. J., Sulardjaka, Ilhamdi, Istiyanto, J., Verma, G., Kurniawan, A. D., Ansori, I., Shalahuddin, L., Valentino, J. M., Depari, Y. P. D. S., & Triyono. (2025). Fatigue crack growth and residual stress in simultaneous double-sided friction stir welded aluminum alloy AA6061-T6. Journal of Advanced Joining Processes, 11, 100300. https://doi.org/10.1016/j.jajp.2025.100300
  11. Hendrato, Puspitasari, P., Jamasri, & Triyono. (2024a). Fatigue crack growth rate and mechanical properties of one-step double-side friction stir welded AA6061-T6. Results in Engineering, 21, 101958. https://doi.org/10.1016/j.rineng.2024.101958
  12. ASTM E384-17. (2017). Test Method for Knoop and Vickers Hardness of Materials. ASTM International. https://doi.org/10.1520/E0384-99
  13. Ilman, M. N. (2010). COMPARATIVE STUDY ON FATIGUE CRACK GROWTH RATE BEHAVIOURS OF FRICTION-STIR WELDED ALUMINIUM ALLOYS 2024- T3 AND 6061-T6
  14. Jacob, A., Mehmanparast, A., D’Urzo, R., & Kelleher, J. (2019). Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments. International Journal of Fatigue, 128, 105196. https://doi.org/10.1016/j.ijfatigue.2019.105196
  15. Khan, N., Rathee, S., & Srivastava, M. (2021). Friction stir welding: An overview on effect of tool variables. Materials Today: Proceedings, 47, 7196–7202. https://doi.org/10.1016/j.matpr.2021.07.487
  16. ASTM International. (2015). Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International. https://doi.org/10.1520/E0647-15E01
  17. Knipling, K. E., Dunand, D. C., & Seidman, D. N. (2006). Criteria for developing castable, creep-resistant aluminum-based alloys – A review. Zeitschrift Für Metallkunde, 97(3), 246–265. https://doi.org/10.3139/146.101249
  18. Kondo, Y. (2003). Fatigue Under Variable Amplitude Loading. Dalam Comprehensive Structural Integrity (hlm. 253–279). Elsevier. https://doi.org/10.1016/B0-08-043749-4/04029-5
  19. Kossakowski, P. G., Wciślik, W., & Bakalarz, M. (2019). MACROSTRUCTURAL ANALYSIS OF FRICTION STIR WELDING (FSW) JOINTS. Journal of Mechanical Engineering Research, 1(1). https://doi.org/10.30564/jmer.v1i1.486
  20. Lathabai, S. (2011). Joining of aluminium and its alloys. Dalam Fundamentals of Aluminium Metallurgy (hlm. 607–654). Elsevier. https://doi.org/10.1533/9780857090256.3.607
  21. Li, G., Zhou, L., Zhang, H., Luo, S., & Guo, N. (2021). Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding. Chinese Journal of Aeronautics, 34(12), 238–250. https://doi.org/10.1016/j.cja.2020.05.037
  22. Liu, H., Chen, Y., Yao, Z., & Luo, F. (2020). Effect of Tool Offset on the Microstructure and Properties of AA6061/AZ31B Friction Stir Welding Joints. Metals, 10(4), 546. https://doi.org/10.3390/met10040546

Last update:

No citation recorded.

Last update:

No citation recorded.