skip to main content

ANALISIS BIODEGRADABLE DAN KEKUATAN TARIK BENANG DARI POLYCAPROLACTONE (PCL) DENGAN METODE WET SPINNING

*Adam Dharmawan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Agus Suprihanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Gunawan Dwi Haryadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Penelitian ini bertujuan untuk menganalisis sifat biodegradabilitas serta kekuatan tarik benang yang dihasilkan dari material PCL menggunakan metode wet spinning. Larutan PCL dengan konsentrasi 20% w/v dilarutkan pada kloroform dan diekstrusi melalui needle tip 21G ke dalam bak koagulasi berisi etanol 96% pada suhu ruang untuk membentuk filamen padat. Spesimen kemudian dikeringkan lalu dipintal dengan variasi 2 ply, 3 ply dan 4 ply dan diuji menggunakan uji tarik berdasarkan standar ASTM D2256. Selain itu, pengujian biodegradasi dilakukan dengan merendam benang dalam larutan infus NaCl selama periode waktu tertentu untuk mengamati perubahan massa. Hasil penelitian menunjukkan bahwa benang PCL mengalami penurunan massa secara bertahap selama perendaman, menandakan terjadinya proses biodegradasi. Secara keseluruhan, benang PCL hasil wet spinning menunjukkan potensi yang baik sebagai material biodegradable dengan kekuatan mekanik yang memadai untuk aplikasi biomedis maupun tekstil ramah lingkungan.
Fulltext View|Download
Keywords: benang polimer; biodegradabilitas; kekuatan tarik; polycaprolactone; wet spinning
  1. Afewerki, S., Harb, S. V., Stocco, T. D., Ruiz-Esparza, G. U., & Lobo, A. O. (2023). Polymers for surgical sutures. In Advanced Technologies and Polymer Materials for Surgical Sutures (pp. 95–128). Elsevier. https://doi.org/10.1016/B978-0-12-819750-9.00004-8
  2. Bi, X., Li, J., Guo, J., & Yu, C. (2025). A novel in-situ crosslinking wet spinning method for promoting the strength of CNC/alginate fiber. Polymer, 325. https://doi.org/10.1016/j.polymer.2025.128313
  3. Ikhtiarini, N., Kamil, M. Z., Bukit, B. F., Juliadmi, D., Prasetiyo, K. W., Fransiska, D., Sedayu, B. B., Subiyanto, B., Sulastiningsih, I. M., Rochima, E., Arivendan, A., & Syamani, F. A. (2025). Biocompatible composites based on alginate, polycaprolactone, and nanocellulose - A review. In International Journal of Biological Macromolecules (Vol. 311). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2025.143423
  4. Logar, M., Prebeg, T., Fiala, E. N., Vrsaljko, D., & Matijašić, G. (2025). Production and evaluation of polymer filaments for potential use in 3D printing of bioresorbable drug-eluting stents. Journal of Drug Delivery Science and Technology, 104. https://doi.org/10.1016/j.jddst.2024.106544
  5. Maqsood, M., & Seide, G. (2018). Statistical Modeling of Thermal Properties of Biobased Compostable Gloves Developed from Sustainable Polymer. Fibers and Polymers, 19(5), 1094–1101. https://doi.org/10.1007/s12221-018-1126-0
  6. Middleton, J. C., & Tipton, A. J. (n.d.). Synthetic biodegradable polymers as orthopedic devices
  7. Mirbagheri, M., Mohebbi-kalhori, D., & Jirofti, N. (2017). Evaluation of Mechanical Properties and Medical Applications of Polycaprolactone Small Diameter Artificial Blood Vessels. International Journal of Basic Science in Medicine, 2(1), 58–70. https://doi.org/10.15171/ijbsm.2017.12
  8. Ochanda, F. (2012). Polyacrylonitrile-Metal Organic Framework (MOF) Composite Electrospun Nanofibers Designed to Remove Chemical Warfare Agent Simulants from a Solution. https://www.researchgate.net/publication/263315176
  9. Paetzold, R., Coulter, F. B., Singh, G., Kelly, D. J., & O’Cearbhaill, E. D. (2022). Fused filament fabrication of polycaprolactone bioscaffolds: Influence of fabrication parameters and thermal environment on geometric fidelity and mechanical properties. Bioprinting, 27. https://doi.org/10.1016/j.bprint.2022.e00206
  10. S. Palla and S Anitha, “Anthropometric Examination of Footprints in South Indian Population for Sex Estimation,” Forensic Science International: Reports, pp. 100354–100354, Jan. 2024, doi: https://doi.org/10.1016/j.fsir.2024.100354
  11. Pan, L., Wang, Y., Jin, Q., Wu, D., Zhu, L., Zhou, Z., & Zhu, M. (2024). Scalable wet-spinning multilevel anisotropic structured PVDF fibers enhanced with cellulose nanocrystals-exfoliated MoS2 for high-performance piezoelectric textiles. Chemical Engineering Journal, 497. https://doi.org/10.1016/j.cej.2024.155671
  12. E. C. Silva et al., “3D facial anthropometry of Chilean workers and migrants: Cross-country comparisons and insights for PPE design,” Applied Ergonomics, vol. 128, pp. 104551–104551, May 2025, doi: https://doi.org/10.1016/j.apergo.2025.104551
  13. R. Alharbi, A., M. Alarifi, I., S. Khan, W., & Asmatulu, R. (2016). Highly Hydrophilic Electrospun Polyacrylonitrile/ Polyvinypyrro-lidone Nanofibers Incorporated with Gentamicin as Filter Medium for Dam Water and Wastewater Treatment. Journal of Membrane and Separation Technology, 5(2), 38–56. https://doi.org/10.6000/1929-6037.2016.05.02
  14. Razzaq, S., Shahid, S., & Nawab, Y. (2024). Applications and environmental impact of biodegradable polymers in textile industry: A review. In International Journal of Biological Macromolecules (Vol. 282). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2024.136791

Last update:

No citation recorded.

Last update:

No citation recorded.