skip to main content

ANALISIS MODAL DAN INTERAKSI STRUKTUR-FLUIDA TURBIN ANGIN SAVONIUS MENGGUNAKAN METODE ELEMEN HINGGA

*Ahmad Shodikin  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Ismoyo Haryanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Gunawan Dwi Haryadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Turbin angin Savonius merupakan turbin sumbu vertikal yang mampu beroperasi pada kecepatan angin rendah, namun memiliki tantangan terkait efisiensi dan respon struktural akibat beban aerodinamika. Penelitian ini bertujuan menganalisis karakteristik dinamis turbin Savonius melalui kajian modal dan interaksi struktur-fluida menggunakan metode elemen hingga dengan pendekatan one-way coupling. Simulasi dilakukan pada kecepatan angin 11,32 m/s dengan kecepatan putar 33,96 rad/s. Hasil analisis modal menunjukkan frekuensi alami mode pertama sebesar 21,41 Hz, lebih tinggi dibanding frekuensi eksitasi turbin 5,41 Hz sehingga aman dari risiko resonansi. Analisis struktur menunjukkan tegangan von Mises maksimum 19,53 MPa dan von Mises strain 0,000317524 mm/mm pada sudut rotasi 835 derajat. Pada posisi yang sama, safety factor terendah tercatat sebesar 14,34. Sementara itu, deformasi maksimum sebesar 0,485 mm terjadi pada sudut 916 derajat. Secara keseluruhan, hasil menunjukkan bahwa beban aerodinamika berpengaruh signifikan terhadap distribusi tegangan, deformasi, dan safety factor turbin. Kajian ini memberikan pemahaman penting mengenai perilaku dinamis turbin Savonius serta menjadi dasar untuk pengembangan desain yang lebih andal dan efisien.

Fulltext View|Download
Keywords: deformasi; frekuensi pribadi; one way coupling; safety factor
  1. H. Im and B. Kim, “Power Performance Analysis Based on Savonius Wind Turbine Blade Design and Layout Optimization through Rotor Wake Flow Analysis,” Energies, vol. 15, no. 24, p. 9500, Dec. 2022, doi: https://doi.org/10.3390/en15249500
  2. Z. Huque, F. Zemmouri, H. Lu, and R. R. Kommalapati, “Fluid–Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips,” Energies, vol. 17, no. 5, p. 1090, Jan. 2024, doi: https://doi.org/10.3390/en17051090
  3. C. Grinderslev, N. N. Sørensen, S. G. Horcas, N. Troldborg, and F. Zahle, “Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling,” Wind Energy Science, vol. 6, no. 3, pp. 627–643, May 2021, doi: https://doi.org/10.5194/wes-6-627-2021
  4. Abdullah Al Noman et al., “Savonius wind turbine blade design and performance evaluation using ANN-based virtual clone: A new approach,” Heliyon, vol. 9, no. 5, pp. e15672–e15672, Apr. 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e15672
  5. D. Liu, X. Xia, J. Yang, and Z. Wang, “Effect of Boundary Conditions on Fluid–Structure Coupled Modal Analysis of Runners,” Journal of Marine Science and Engineering, vol. 9, no. 4, pp. 434–434, Apr. 2021, doi: https://doi.org/10.3390/jmse9040434
  6. J. Duan, C. Li, and J. Jin, “Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction,” Energies, vol. 15, no. 2, pp. 670–670, Jan. 2022, doi: https://doi.org/10.3390/en15020670
  7. H. Ullah, M. Hussain, N. Abbas, H. Ahmad, M. Amer, and M. Noman, “Numerical investigation of modal and fatigue performance of a horizontal axis tidal current turbine using fluid–structure interaction,” Journal of Ocean Engineering and Science, vol. 4, no. 4, pp. 328–337, Dec. 2019, doi: https://doi.org/10.1016/j.joes.2019.05.008
  8. N. Navadeh, I. Goroshko, Y. Zhuk, F. Etminan Moghadam, and A. Soleiman Fallah, “Finite Element Analysis of Wind Turbine Blade Vibrations,” Vibration, vol. 4, no. 2, pp. 310–322, Apr. 2021, doi: https://doi.org/10.3390/vibration4020020
  9. C. Muyan and D. Coker, “Finite element simulations for investigating the strength characteristics of a 5 m composite wind turbine blade,” Wind Energy Science, vol. 5, no. 4, pp. 1339–1358, Oct. 2020, doi: https://doi.org/10.5194/wes-5-1339-2020
  10. Y.-Z. Wang, G.-Q. Li, Y.-B. Wang, and Y.-F. Lyu, “Simplified method to identify full von Mises stress-strain curve of structural metals,” Journal of Constructional Steel Research, vol. 181, p. 106624, Jun. 2021, doi: https://doi.org/10.1016/j.jcsr.2021.106624
  11. Ö. ÖĞÜÇLÜ, “Structural Design and Stress Analysis of A Helical Vertical Axis Wind Turbine Blade,” Sakarya University Journal of Science, vol. 24, no. 6, Aug. 2020, doi: https://doi.org/10.16984/saufenbilder.719223
  12. Ahmed Al-Balushi, K. Alam, M. Iqbal, A. Husain, A. Ahmad, and Abullah Al-Amrani, “Modelling and Analysis of Deformation and Stresses in Horizontal Axis Wind Turbine,” CFD letters, vol. 15, no. 2, pp. 16–24, Jan. 2023, doi: https://doi.org/10.37934/cfdl.15.2.1624
  13. L. Zhang, J. Jia, S. Shao, W. Gao, and D. Niu, “Experimental Investigation of the Dynamic Deformation of Wind Turbine Blades Based on 3D-Digital Image Correlation,” Energies, vol. 17, no. 24, p. 6330, Dec. 2024, doi: https://doi.org/10.3390/en17246330
  14. S. Al-Sanad, L. Wang, J. Parol, and A. Kolios, “Reliability-based design optimisation framework for wind turbine towers,” Renewable Energy, vol. 167, pp. 942–953, Apr. 2021, doi: https://doi.org/10.1016/j.renene.2020.12.022

Last update:

No citation recorded.

Last update:

No citation recorded.