skip to main content

SIMULASI NUMERIK PENINGKATAN HEAT TRANSFER MENGGUNAKAN DELTA WINGLET VORTEX GENERATOR PADA SALURAN

*Marcellias Nathan Prima  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Syaiful Syaiful  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Shofwan Bahar  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Efisiensi energi dalam sistem industri sangat bergantung pada kinerja fin-and-tube heat exchangers (FTHE), sehingga peningkatan kapasitas perpindahan panas menjadi fokus utama dalam upaya konservasi energi. Salah satu metode yang terbukti efektif untuk meningkatkan laju perpindahan kalor adalah penggunaan vortex generators (VGs), yang menciptakan pusaran aliran guna memperkuat pencampuran fluida di dalam penukar panas. Studi ini melakukan simulasi numerik untuk menganalisis kinerja delta winglet vortex generators (DW VGs) dan perforated delta winglet vortex generators (PDW VGs) dalam meningkatkan efisiensi termohidrolik. Kecepatan aliran divariasikan antara 0,4 m/s hingga 2 m/s dengan interval 0,2 m/s, serta digunakan variasi sudut serang sebesar 10° dan 15°. Evaluasi performa dilakukan menggunakan parameter Performance Evaluation Criteria (PEC), yang dihitung berdasarkan rasio peningkatan koefisien perpindahan panas terhadap peningkatan faktor gesekan. Hasil simulasi menunjukkan bahwa konfigurasi DW VGs memiliki nilai PEC yang lebih tinggi dibandingkan PDW VGs, menandakan efisiensi perpindahan panas yang lebih rendah walaupun tanpa peningkatan pressure drop yang signifikan.

Fulltext View|Download
Keywords: performance evaluation criteria (pec); simulasi numerik; vortex generators
  1. K. Torii, K. M. Kwak, and K. Nishino, “Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers,” Int J Heat Mass Transf, vol. 45, 2002
  2. A. Lemouedda, M. Breuer, E. Franz, T. Botsch, and A. Delgado, “Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger,” Int J Heat Mass Transf, vol. 53, no. 23–24, pp. 5386–5399, Nov. 2010, doi: 10.1016/j.ijheatmasstransfer.2010.07.017
  3. S. Skullong, P. Promvonge, C. Thianpong, and N. Jayranaiwachira, “Thermal behaviors in a round tube equipped with quadruple perforated-delta-winglet pairs,” Appl Therm Eng, vol. 115, pp. 229–243, 2017, doi: 10.1016/j.applthermaleng.2016.12.082
  4. L. Yang, M. Xu, J. Wang, L. Song, and J. Wang, “Experimental and numerical analysis of a demister with vortex generators,” Chin J Chem Eng, vol. 33, pp. 83–95, 2021, doi: 10.1016/j.cjche.2020.07.045
  5. S. Y. Yoo, D. S. Park, M. H. Chung, and S. Y. Lee, “Heat transfer enhancement for fin-tube heat exchanger using vortex generators,” KSME International Journal, vol. 16, no. 1, pp. 109–115, 2002, doi: 10.1007/BF03185161
  6. S. B. Bhajankar and U. S. Wankhede, “A comprehensive review of heat transfer enhancement by passive inserts,” International Journal of Applied Engineering Research, vol. 10, no. 6, pp. 13863–13876, 2015
  7. M. Dogan and A. Abir İgci, “An experimental comparison of delta winglet and novel type vortex generators for heat transfer enhancement in a rectangular channel and flow visualization with stereoscopic PIV,” Int J Heat Mass Transf, vol. 164, Jan. 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120592
  8. L. Chai and S. A. Tassou, “A review of airside heat transfer augmentation with vortex generators on heat transfer surface,” Energies (Basel), vol. 11, no. 10, 2018, doi: 10.3390/en11102737
  9. M. Awais and A. A. Bhuiyan, “Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities,” Mar. 01, 2018, Elsevier Ltd. doi: 10.1016/j.tsep.2018.02.007
  10. M. F. B. Raihan, M. T. Al-Asadi, and H. M. Thompson, “Management of conjugate heat transfer using various arrangements of cylindrical vortex generators in micro-channels,” Appl Therm Eng, vol. 182, no. September 2020, p. 116097, 2021, doi: 10.1016/j.applthermaleng.2020.116097
  11. J. Xie and H. M. Lee, “Flow and heat transfer performances of directly printed curved-rectangular vortex generators in a compact fin-tube heat exchanger,” Appl Therm Eng, vol. 180, no. May, 2020, doi: 10.1016/j.applthermaleng.2020.115830
  12. K. W. Song, Z. P. Xi, M. Su, L. C. Wang, X. Wu, and L. B. Wang, “Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger,” Exp Therm Fluid Sci, vol. 82, pp. 8–18, 2017, doi: 10.1016/j.expthermflusci.2016.11.002
  13. Y. Luo, G. Li, N. S. Bennett, Z. Luo, A. Munir, and M. S. Islam, “Heat Transfer Enhancement in Heat Exchangers by Longitudinal Vortex Generators: A Review of Numerical and Experimental Approaches,” Energies (Basel), vol. 18, no. 11, pp. 1–49, 2025, doi: 10.3390/en18112896
  14. Syaiful, H. Nabilah, M. S. K. T. Suryo Utomo, A. Suprihanto, and M. F. Soetanto, “Numerical simulation of heat transfer enhancement from tubes surface to airflow using concave delta winglet vortex generators,” Results in Engineering, vol. 16, Dec. 2022, doi: 10.1016/j.rineng.2022.100710
  15. A. Gupta, A. Roy, S. Gupta, and M. Gupta, “Numerical investigation towards implementation of punched winglet as vortex generator for performance improvement of a fin-and-tube heat exchanger,” Int J Heat Mass Transf, vol. 149, pp. 1–16, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.119171
  16. W. Jedsadaratanachai and A. Boonloi, “Effects of blockage ratio and pitch ratio on thermal performance in a square channel with 30° double V-baffles,” Case Studies in Thermal Engineering, vol. 4, pp. 118–128, Nov. 2014, doi: 10.1016/j.csite.2014.08.002
  17. M. Ozsen and S. Yildiz, “NUMERICAL PERFORMANCE ANALYSIS OF DELTA VORTEX GENERATOR LOCATED UPSTREAM OF IN-LINE TUBE BUNDLE,” vol. 28, no. 4, pp. 2891–2903, 2024, doi: https://doi.org/10.2298/TSCI231010287O
  18. L. O. Salviano, D. J. Dezan, and J. I. Yanagihara, “Thermal-hydraulic performance optimization of inline and staggered fin- tube compact heat exchangers applying longitudinal vortex generators Thermal-hydraulic performance optimization of inline and staggered fin-tube compact heat exchangers applying longitudinal vortex generators,” Appl Therm Eng, vol. 95, no. March 2018, pp. 311–329, 2015, doi: 10.1016/j.applthermaleng.2015.11.069
  19. D. C. Pal and A. Majumder, “NUMERICAL STUDY OF FIN-TUBE TYPE HEAT EXCHANGER WITH DELTA WINGLETS,” no. March, 2016, doi: 10.5098/hmt.7.1
  20. P. S. B. Zdanski, D. Pauli, and F. A. L. Dauner, “Effects of delta winglet vortex generators on fl ow of air over in-line tube bank : A new empirical correlation for heat transfer prediction ☆,” International Communications in Heat and Mass Transfer, vol. 67, pp. 89–96, 2015, doi: 10.1016/j.icheatmasstransfer.2015.07.010
  21. F. Naoumis, H. Linardos, G. Mihalakakou, and J. A. Paravantis, “Heat Transfer in U-Tubes : Simulating the Performance of Delta Winglet Pairs in Laminar and Turbulent Flows,” 2025
  22. Y. Chen, M. Fiebig, and N. K. Mitra, “Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line,” Int J Heat Mass Transf, vol. 41, no. 24, pp. 4151–4166, 1998, doi: 10.1016/S0017-9310(98)00130-6
  23. K. W. Song, K. Sun, X. J. Lu, Q. F. Gao, Q. Z. Hou, and B. D. Gu, “Effect of wavy delta winglet vortex generators on heat transfer performance of a fin-and-tube heat exchanger,” Int J Heat Fluid Flow, vol. 108, Sep. 2024, doi: 10.1016/j.ijheatfluidflow.2024.109485
  24. X. Wu, Z. M. Lin, S. Liu, M. Su, L. C. Wang, and L. B. Wang, “Experimental study on the effects of fin pitches and tube diameters on the heat transfer and fluid flow characteristics of a fin punched with curved delta-winglet vortex generators,” Appl Therm Eng, vol. 119, pp. 560–572, 2017, doi: 10.1016/j.applthermaleng.2017.03.072
  25. Y. Effendi, A. Prayogo, Syaiful, M. Djaeni, and E. Yohana, “Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel,” Experimental Heat Transfer, vol. 35, no. 5, pp. 553–576, 2022, doi: 10.1080/08916152.2021.1919245
  26. A. T. Wijayanta, T. Istanto, K. Kariya, and A. Miyara, “Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles,” Exp Therm Fluid Sci, vol. 87, pp. 141–148, 2017, doi: 10.1016/j.expthermflusci.2017.05.002

Last update:

No citation recorded.

Last update:

No citation recorded.