skip to main content

STUDI NUMERIK PENGARUH VARIASI LAYER KOMPOSIT TERHADAP PERILAKU DEFORMASI PADA TANGKI HIDROGEN TIPE IV

*Rahmat Ginanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Ojo Kurdi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sulardjaka Sulardjaka  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini mengevaluasi pengaruh jumlah lapisan komposit terhadap performa mekanik tangki hidrogen tipe IV dengan menggunakan liner ABS dan komposit E-glass/epoxy melalui simulasi metode elemen hingga (FEM) di ANSYS. Variasi jumlah lapisan menunjukkan bahwa peningkatan lapisan secara umum mampu mengurangi deformasi dan meningkatkan kekakuan struktur. Namun, tidak semua peningkatan memberikan dampak signifikan, sehingga diperlukan pertimbangan efisiensi material. Konfigurasi dengan jumlah lapisan menengah terbukti memberikan keseimbangan terbaik antara kekuatan struktur dan efisiensi penggunaan material. Temuan ini memberikan dasar pertimbangan dalam perancangan tangki hidrogen yang ringan, kuat, dan aman untuk aplikasi kendaraan berbasis fuel cell.

Fulltext View|Download
Keywords: deformasi; finite element method (fem); layer komposit; material komposit; tangki hidrogen tipe iv
  1. Ali, Imran, et al. “Recent Advances in Hydrogen Storage Methods.” ACS Symposium Series, 21 Aug. 2024, pp. 135–179, https://doi.org/10.1021/bk-2024-1474.ch007. Accessed 22 Apr. 2025
  2. Stetson, N.T., et al. “Introduction to Hydrogen Storage.” Compendium of Hydrogen Energy, 2016, pp. 3–25, https://doi.org/10.1016/b978-1-78242-362-1.00001-8
  3. Jin, Zeping, et al. “Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank.” Polymers, vol. 15, no. 10, 10 May 2023, pp. 2258–2258, https://doi.org/10.3390/polym15102258
  4. Zhang, Qian, et al. “Influence of Composite Material Laying Parameters on the Load-Carrying Capacity of Type IV Hydrogen Storage Vessel.” Science and Engineering of Composite Materials, vol. 31, no. 1, 1 Jan. 2024, https://doi.org/10.1515/secm-2024-0046. Accessed 22 Apr. 2025
  5. Reda, Reham, et al. “Finite Element Modeling of Different Types of Hydrogen Pressure Vessels under Extreme Conditions for Space Applications.” Processes, vol. 13, no. 5, 7 May 2025, p. 1429, https://doi.org/10.3390/pr13051429. Accessed 9 July 2025
  6. Madhavi Konni, et al. “On-Board and Off-Board Technologies for Hydrogen Storage.” Advances in Computer and Electrical Engineering Book Series, 1 Jan. 2021, pp. 139–165, https://doi.org/10.4018/978-1-7998-4945-2.ch006. Accessed 19 Apr. 2025
  7. Zhao, Xin, et al. “Preparation of Carbon Fibre-Reinforced Composite Panels from Epoxy Resin Matrix of Nano Lignin Polyol Particles.” Journal of Cleaner Production, vol. 428, 23 Oct. 2023, pp. 139170–139170, https://doi.org/10.1016/j.jclepro.2023.139170. Accessed 29 Sept. 2024
  8. Hashim, U R, et al. “Fabrication and Characterisation of Carbon Fibre Reinforced Polymer Rods with Aluminium Foam Core.” Materials Research Innovations, vol. 18, no. sup6, 5 Dec. 2014, pp. S6-208, https://doi.org/10.1179/1432891714z.000000000957. Accessed 22 Apr. 2025
  9. Li, Li, et al. “Studies on Modification of Polyamide 6 Plastics for Hydrogen Storage.” Polymers, vol. 17, no. 4, 18 Feb. 2025, pp. 523–523, https://doi.org/10.3390/polym17040523. Accessed 19 Apr. 2025
  10. Saharudin, Mohd Shahneel, et al. “Numerical Analysis and Life Cycle Assessment of Type v Hydrogen Pressure Vessels.” Journal of Composites Science, vol. 9, no. 2, Feb. 2025, p. 75, www.mdpi.com/2504-477X/9/2/75?form=MG0AV3, https://doi.org/10.3390/jcs9020075. Accessed 27 Apr. 2025

Last update:

No citation recorded.

Last update:

No citation recorded.