skip to main content

ANALISIS PENGARUH KETEBALAN ACETABULAR CUP PADA PERFORMA HIP IMPLANT MENGGUNAKAN METODE ELEMEN HINGGA

*Aminuddin Setyo Widodo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Muchammad Muchammad  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Hip joint (sendi pinggul) merupakan sendi yang menghubungkan tulang paha ke panggul. Seiring waktu berjalan sendi ini dapat memburuk dan menimbulkan masalah yang dapat membahayakan fungsinya. Total hip arthroplasty (THA) diperlukan agar penderita penyakit terkait tetap mampu beraktifitas kembali dengan normal. Proses tersebut dilakukan dengan mengganti sendi pinggul yang rusak dengan sendi pinggul buatan (hip implant) yang terdiri atas stem, femoral head, acetabular cup, dan backing cup. Penelitian ini berfokus pada pengaruh ketebalan acetabular cup terhadap hip implant pada kombinasi material yang berbeda. Dengan menggunakan kondisi batas standar yang merujuk pada ASTM F2996-13, analisis 3 dimensi menggunakan metode elemen hingga dilakukan untuk mengetahui pengaruh ketebalan acetabular cup terhadap hip implant. Artikulasi MoP dan MoM dengan material Co-Cr dan UHMWPE digunakan dalam analisis tersebut. Parameter yang digunakan adalah tegangan von Mises pada taperBody, deformasi total dan tegangan von Mises pada seluruh implant. Penelitian ini menunjukkan penambahan ketebalan acetabular cup memiliki pengaruh yang sama seperti penambahan diameter femoral head pada implant, serta implant dengan ketebalan acetabular cup tertinggi memiliki peforma yang lebih baik. Bagaimanapun, menambah ketebalan acetabular cup tidak menghasilkan pengaruh yang signifikan terhadap kontur distribusi tegangan pada keseluruhan implant.

Fulltext View|Download
Keywords: Analisis elemen hingga, hip implant, ketebalan acetabular cup, total hip arthroplashy
  1. Iyer, K. M., 2021, “The Hip Joint, 2nd ed,” Jenny Standford Publishung Pte. Ltd, New York
  2. Chethan, K. N., Zuber, M., Zhenoy, B., 2019, “Finite element analysis of different hip implant designs along with femur under static loading conditions,” Journal of Biomedical Physics & Engineering, 9: 507–516
  3. Guo, L., Naghavi, S. A, Wang, Z., Varma, S. N., Han, Z., Yao, Z., Wang L., Wang L., Liu, C., 2019, ”On the design evolution of hip implants: A review,” Materials & Design, 216: 1–18
  4. Chethan, K. N., Bhat, N. S., Zuber, M., Shenoy, B. S., 2021, “Finite element analysis of hip implant with varying taper neck lengths under static loading conditions,” Computer Methods and Programs in Biomedicine, 208: 1–7
  5. Taqriban, R. B., Ismail, R., Jamari, J., Bayuseno, A. P., 2021, “Finite element analysis of artificial hip joint implant made from stainless steel 316L,” Bali Medical Journal, 10: 448–452
  6. Chethan, K. N., Zuber, M., Bhat, N. S., Shenoy, B. S., 2020, “Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis,” Cogent Engineering, 7: 1–14
  7. Gotman, I., 2021, “Biomechanical and Tribological Aspects of Orthopaedic Implants, in G. P. Ostermeyer, V. L. Popov, E. V. Shilko, O. S. Vasiljeva (Ed.): Multiscale Biomechanics and Tribology of Inorganic and Organic Systems,” Springer Nature, Cham, Switzerland, p. 25–44
  8. Kiernan, S., Geijer, M., Sundberg, M., Flivik, G., 2020, “Effect of symmetrical restoration for the migration of uncemented total hip arthroplasty: a randomized RSA study with 75 patients and 5-year follow-up,” Journal of Orthopaedic Surgery and Research, 15: 225
  9. Merola, M., Affatato, S., 2019, “Materials for hip prostheses: a review of wear and loading considerations,” Materials, 12: 495
  10. Sabatini, A. L., Goswami, T., 2008, “Hip implants VII: Finite element analysis and optimization of cross-sections,” Materials & Design, 29: 1438–1446
  11. Wibowo, B. S., Wijaya, P. N., Tauviqirrahman, M., Ismail, R., Muchammad, J. A., 2019, “A 3-dimensional computational fluid-structure interaction analysis in the hip-joint prosthesis during solat (prayer) activity,” Jurnal Tribologi, 20: 125–141
  12. Saputra, E., Anwar, I. B., Jamari, J., van der Heide, E. A., 2019, “Wear formulation of total hip prosthesis for salat activity,” International Review of Mechanical Engineering, 13: 29–37
  13. Alkhatib, S. E., Mehboob, H., Tarlochan, F., 2019, “Finite Element Analysis of Porous Titanium Alloy Hip Stem to Evaluate the Biomechanical Performance During Walking and Stair Climbing,” Journal of Bionic Engineering, 16: 1103–1115
  14. Tauviqirrahman, M., Ammarullah, M. I., Jamari, J., Saputra, E., Winarni, T. I., Kurniawan, F. D., Shiddiq, S. A., van der Heide, E., 2023, “Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle,” Scientific Reports, 13: 3564
  15. Jamari, J., Saputra, E., Anwar, I. B., Ismail, R., van der Heide, E. V., 2017, “Finite Element Study of the Effect of UHMWPE Liner Thickness on the Contact Area and Stress Distribution in a Bipolar Hip Joint,” Materials Science and Engineering, 202: 1–8
  16. Chatterjee, S., 2022, “Finite Element Analysis in Biomechanics, in P. Pain, S. Banerjee, G. Bose (Ed.): Advances in Computational Approaches in Biomechanics,” IGI Global, Hershey, PA, USA, p. 16–47
  17. Erdemir, A., Guess, T. M., Halloran, J., Tadepalli, S. C., Morrison, T. M., 2012, “Considerations for reporting finite element analysis studies in biomechanics,”,Journal of Biomechanics, 45: 625–633
  18. Heller, M. O., 2022, “Finite element analysis in orthopedic biomechanics, in Innocenti, B., Galbusera, F., (Ed.): Human Orthopaedic Biomechanics,” Academic Press, Cambridge, Massachusetts, USA, p. 637–658
  19. ASTM International, 2013, “ASTM F2996-13 Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems,” ASTM International, West Conshohocken, PA, USA
  20. Chethan, K. N., Zuber, M., Shenoy, B. S., Kini, C. R., 2019, “Static structural analysis of different stem designs used in total hip arthroplasty using finite element method,” Heliyon, 5
  21. Bhawe, A. K., Shah, K. M., Somani, S., Shenoy, B. S., Bhat, N. S., Zuber, M., Chethan, K. N., 2022, “Static structural analysis of the effect of change in femoral head sizes used in Total Hip Arthroplasty using finite element method,” Cogent Engineering, 9: 1–13
  22. Lee, C. K., Kwan, M. K., Merican, A. M., Ng, W. M., Saw, L. B., Teh, K. K., Krishnan, M., Ramiah, R., 2014, “Femoral head diameter in the Malaysian population”, Singapore Medical Journal, 55: 436–438
  23. Chethan, K. N., Bhat, N. S., Zuber, M., Shenoy, B. S., Jin, Z., 2022, “Evolution of different designs and wear studies in total hip prosthesis using finite element analysis: A review”, Cogent Engineering, 9: 1–30
  24. Ruggiero, A., D'Amato, R., Affatato, S., 2019, “Comparison of Meshing Strategies in THR Finite Element Modelling”, Mathematics, 12: 2332
  25. Anonymus, “Total Hip Arthroplasty Techniques–StatPearls–NCBI Bookshelf,” www.ncbi.nlm.nih.gov/books/NBK507864, diakses: 24 Juni 2024
  26. Soliman, M. M., Chowdhury, M. E., Islam, M. T., Musharavati, F., Nabil, M., Hafizh, M., Khandakar A., Mahmud S., Nezhad E. Z., Shuzan M. N. I., Abir, F. F., 2022, “A review of biomaterials and associated performance metrics analysis in pre-clinical finite element model and in implementation stages for total hip implant system,” Polymers, 14: 4308
  27. Bandyopadhyay, A., Traxel, K. D., Avila, J. D., Mitra, I., and Bose, S., 2020, “CoCr alloys, in J. D. Bronzino and D. R. Peterson (Ed.): Biomaterials Science, 3rd Ed,” Academic Press, Amsterdam, p. 257–269

Last update:

No citation recorded.

Last update:

No citation recorded.