skip to main content

ANALISIS VON MISES STRESS PADA TULANG L1 HINGGA L2 DENGAN KONDISI PEMBEBANAN MULTIAXIAL MENGGUNAKAN METODE ELEMEN HINGGA

*Muhammad Rafli  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Jamari Jamari  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tri Indah Winarni  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini bertujuan untuk menganalisis distribusi tegangan von mises pada lumbar spine L1 hingga L2 dengan kondisi pembebanan multiaxial menggunakan metode elemen hingga (Finite Element Analysis/FEA). Data geometri diperoleh dari CT-scan pasien laki-laki berusia 55 tahun dalam kondisi normal, yang selanjutnya direkonstruksi menjadi model 3D menggunakan perangkat lunak CAD dan disimulasikan dengan Ansys 2023 R2. Simulasi dilakukan dengan pembebanan aksial sebesar 500 N dan variasi momen lentur (2,5 N.m, 5 N.m, 7,5 N.m, dan 10 N.m) dalam enam arah gerak. Hasil penelitian menunjukkan bahwa nilai von mises stresstertinggi pada bagian cancellous dan endplate ditemukan pada kondisi flexion dengan momen 10 N.m. Namun, terdapat ketidakteraturan pada data endplate, di mana tegangan tertinggi tidak selalu terjadi pada momen tertinggi. Penelitian ini juga menekankan pentingnya evaluasi biomekanis pada struktur cancellous dan endplate yang selama ini kurang diperhatikan, serta menunjukkan peran penting ligamen dalam menjaga kestabilan segmental tulang belakang.

Fulltext View|Download
Keywords: cancellous; endplate; finite element analysis; L1-L2; ligamen; lumbar spine; multiaxial; von mises stress
  1. Park, W.M., Kim, K. and Kim, Y.H. (2013) ‘Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine.’, Computers in biology and medicine, 43(9), pp. 1234–1240. Available at: https://doi.org/10.1016/j.compbiomed.2013.06.011
  2. Galbusera, F., & Bassani, T. (2019). Lumbar spine biomechanics: A review of in vitro and computational studies. Journal of Biomechanics, 94, 73–83. https://doi.org/10.1016/j.jbiomech.2019.07.004
  3. Lomeli-Rivas, N., & Larrinúa-Betancourt, R. (2019). Biomechanical analysis of the lumbar spine: A tool for clinical interpretation and decision-making. Journal of Medical Biomechanics, 34(2), 115–123. https://doi.org/10.1016/j.medbio.2019.02.005
  4. Jamari, J. et al. (2021) ‘The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty.’, Journal of functional biomaterials, 12(2). Available at: https://doi.org/10.3390/jfb12020038
  5. Yeh, M.K. et al. (2014) ‘Bending stress analysis of laminated foldable touch panel’, Procedia Engineering, 79(1st ICM), pp. 189–193. Available at: https://doi.org/10.1016/j.proeng.2014.06.330
  6. Udofia, I. et al. (2007) ‘The initial stability and contact mechanics of a press-fit resurfacing arthroplasty of the hip.’, The Journal of bone and joint surgery. British volume, 89(4), pp. 549–556. Available at: https://doi.org/10.1302/0301-620X.89B4.18055
  7. Wáng, Y.X.J. et al. (2018) ‘Osteoporotic vertebral endplate and cortex fractures: A pictorial review’, Journal of Orthopaedic Translation. Elsevier (Singapore) Pte Ltd, pp. 35–49. Available at: https://doi.org/10.1016/j.jot.2018.08.004
  8. Tsujimoto, R., Yamada, H., Nakazawa, T., Sugiura, T., & Ito, H. (2016). Degenerative disc disease and osteophyte formation in lumbar spondylosis: A radiological and pathological correlation. Spine Journal, 16(5), 679–687. https://doi.org/10.1016/j.spinee.2016.01.012
  9. Yamamoto, I. et al. (1989) ‘Three-dimensional movements of the whole lumbar spine and lumbosacral joint.’, Spine, 14(11), pp. 1256–1260. Available at: https://doi.org/10.1097/00007632-198911000-00020
  10. Dreischarf, M. et al. (2014) ‘Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together’, Journal of Biomechanics, 47(8), pp. 1757–1766. Available at: https://doi.org/10.1016/j.jbiomech.2014.04.002
  11. Cho, A.R. et al. (2015) ‘Effect of augmentation material stiffness on adjacent vertebrae after osteoporotic vertebroplasty using finite element analysis with different loading methods’, Pain Physician, 18(6), pp. E1101–E1110. Available at: https://doi.org/10.36076/ppj.2015/18/e1101
  12. Li, H. and Wang, Z. (2006) ‘Intervertebral disc biomechanical analysis using the finite element modeling based on medical images’, Computerized Medical Imaging and Graphics, pp. 363–370. Available at: https://doi.org/10.1016/j.compmedimag.2006.09.004

Last update:

No citation recorded.

Last update:

No citation recorded.