skip to main content

ANALISIS PENGARUH SUHU DAN MATERIAL LINER DAN COMPOSITE TERHADAP KEKUATAN STRUKTUR DINDING HYDROGEN TANK TYPE III DENGAN FINITE ELEMENT METHOD

*Ilhan Raznand Allabib  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sulistyo Sulistyo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penelitian ini bertujuan untuk menganalisis pengaruh variasi suhu dan kombinasi material terhadap kekuatan struktur dinding tangki hidrogen Tipe III dengan menggunakan metode elemen hingga (Finite Element Method). Material yang digunakan pada bagian liner adalah baja AISI 4130, sedangkan untuk bagian komposit digunakan E-Glass/Epoxy. Simulasi dilakukan pada tekanan internal sebesar 70 MPa dengan tiga kondisi suhu operasi, yaitu -20°C, 20°C, dan 70°C. Hasil analisis menunjukkan bahwa deformasi struktural meningkat seiring dengan kenaikan suhu, yang disebabkan oleh penurunan kekakuan material akibat pelunakan termal. Meskipun demikian, nilai deformasi masih berada dalam batas aman. Di sisi lain, tegangan maksimum pada lapisan liner menunjukkan tren penurunan seiring naiknya suhu, mengindikasikan terjadinya relaksasi tegangan pada material logam. Penurunan ini bersifat moderat, sehingga struktur tetap menunjukkan stabilitas yang baik terhadap fluktuasi suhu. Secara keseluruhan, kombinasi material AISI 4130 dan E-Glass/Epoxy terbukti cukup andal dalam mempertahankan kekuatan struktural tangki hidrogen Tipe III di bawah kondisi termal yang bervariasi.

Fulltext View|Download
Keywords: aisi 4130; e-glass/epoxy; finite element method; suhu operasi; tangki hidrogen tipe iii
  1. Kuroki, T., Nagasawa, K., Peters, M., Leighton, D., Kurtz, J., Sakoda, N., Monde, M. and Takata, Y. (2021). Thermodynamic modeling of hydrogen fueling process from high-pressure storage tank to vehicle tank. International Journal of Hydrogen Energy, 46(42), hal. 22004-22017. https://doi.org/10.1016/j.ijhydene.2021.04.037
  2. Sapre, S., Vyas, M. and Pareek, K. (2021). Impact of refueling parameters on storage density of compressed hydrogen storage Tank. International Journal of Hydrogen Energy, 46(31), hal. 16685-16692. https://doi.org/10.1016/j.ijhydene.2020.08.136
  3. Koutsawa, Y. and Bouhala, L. (2024). Uncertainty analysis in the design of Type-IV composite pressure vessels for hydrogen storage. Composites Part C Open Access, 16, hal. 100544–100544. https://doi.org/10.1016/j.jcomc.2024.100544
  4. Niranjana, S.J., Patel, S.V. and Dubey, A.K. (2018). Design and Analysis of Vertical Pressure Vessel using ASME Code and FEA Technique. IOP Conference Series: Materials Science and Engineering, 376, hal. 012135. https://doi.org/10.1088/1757-899x/376/1/012135
  5. Zhou, W., Wang, J., Pan, Z., Liu, J., Ma, L., Zhou, J. and Su, Y. (2022). Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel. International Journal of Hydrogen Energy, 47(91), hal. 38862–38883. https://doi.org/10.1016/j.ijhydene.2022.09.028
  6. Sapre, S., Pareek, K. and Vyas, M. (2020). Investigation of structural stability of type IV compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage, 2(4), e150. https://doi.org/10.1002/est2.150
  7. A. Díaz, Cuesta, I.I. and Alegre, J.M. (2017). A methodology for the numerical assessment of autofrettage influence on hydrogen content near a notch in a 4130 steel pressure vessel. Theoretical and Applied Fracture Mechanics, 92, hal. 205–213. https://doi.org/10.1016/j.tafmec.2017.07.024
  8. Jaber, M., Yahya, A., Arif, A.F., Jaber, H. and Alkhedher, M. (2024). Burst pressure performance comparison of type V hydrogen tanks: Evaluating various shapes and materials. International Journal of Hydrogen Energy, 81, hal .906–917. https://doi.org/10.1016/j.ijhydene.2024.07.315
  9. Zou, L., Li, B., Han, B., Liu, Y., Wang, X., Bi, M. and Shu, C.-M. (2024). Release of high-pressure hydrogen from type III tank in a fire scenario: Analysis and prediction of jet flame length and thermal response characteristics. Fuel, 372, hal. 132153–132153. https://doi.org/10.1016/j.fuel.2024.132153
  10. de Miguel, N., Ortiz Cebolla, R., Acosta, B., Moretto, P., Harskamp, F. and Bonato, C. (2015). Compressed hydrogen tanks for on-board application: Thermal behaviour during cycling. International Journal of Hydrogen Energy, 40(19), hal. 6449–6458. https://doi.org/10.1016/j.ijhydene.2015.03.035

Last update:

No citation recorded.

Last update:

No citation recorded.