skip to main content

IDENTIFIKASI PARAMETER SISTEM TANDU UNTUK KEPERLUAN SIMULASI SISTEM KONTROL

*Ayu Aprilia  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Joga Dharma Setiawan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Toni Prahasto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Sistem tandu yang digunakan dalam evakuasi udara, terutama pada helikopter, memerlukan stabilisasi agar tetap seimbang selama operasi. Untuk merancang sistem kontrol yang efektif, diperlukan identifikasi parameter sistem yang akurat guna mendukung simulasi dan analisis performa kendali. Penelitian ini berfokus pada penentuan parameter utama sistem tandu, termasuk massa, momen inersia, gaya aerodinamika, torsi aktuator, serta respons sensor terhadap dinamika sistem. Metode eksperimen dan pemodelan numerik digunakan untuk mengukur serta memvalidasi parameter yang diperoleh. Hasil dari studi ini akan menjadi dasar dalam pengembangan model simulasi sistem kontrol, yang dapat digunakan untuk mengoptimalkan algoritma kendali stabilisasi tandu dalam berbagai kondisi operasional.

Fulltext View|Download
Keywords: identifikasi parameter; simulasi kontrol; sistem tandu; stabilisasi
  1. C. Y. Lam, A. M. Cruz, and A. Fujiwara, “Optimizing travel route for medical services during evacuation: A network and shared mobility perspective,” Progress in Disaster Science, p. 100407, Feb. 2025, doi: 10.1016/j.pdisas.2025.100407
  2. A. Aubrion et al., “Plan the evacuation of a hospital at imminent risk: A multimodal assessment for each hospital,” International Journal of Disaster Risk Reduction, vol. 103, Mar. 2024, doi: 10.1016/j.ijdrr.2024.104305
  3. A. Morock, T. Aldhizer, M. Y. Lanzerotti, A. Arena, J. Capps, and W. Lacarbonara, “A shortening pendulum: Hoisting control for medical evacuation rescues,” Int J Non Linear Mech, vol. 158, Jan. 2024, doi: 10.1016/j.ijnonlinmec.2023.104566
  4. N. Gecejová, M. Ceškovic, P. Kurdel, and M. Gamcová, “The Methodology of Modification of the Conventional UAS for HEMS and SAR Support,” in Transportation Research Procedia, Elsevier B.V., 2024, pp. 13–24. doi: 10.1016/j.trpro.2024.11.003
  5. Q. Xu and Y. Zhang, “Event-triggered nonlinear information fusion preview control of a two-degree-of-freedom helicopter system,” Aerosp Sci Technol, vol. 140, Sep. 2023, doi: 10.1016/j.ast.2023.108474
  6. P. A. Meehan and K. J. Austin, “Prediction of chaotic instabilities in a dragline bucket swing,” Int J Non Linear Mech, vol. 41, no. 2, pp. 304–312, Mar. 2006, doi: 10.1016/j.ijnonlinmec.2005.08.004
  7. C. Yang, J. Huang, and W. Singhose, “Dynamic modeling and oscillation control of industrial cranes transporting upright slender flexible payloads,” Mech Syst Signal Process, vol. 220, Nov. 2024, doi: 10.1016/j.ymssp.2024.111676
  8. R. S. Pal, “Modelling of helicopter underslung dynamics using kane’s method,” in IFAC-PapersOnLine, Elsevier B.V., 2020, pp. 536–542. doi: 10.1016/j.ifacol.2020.06.090
  9. J. Ye and J. Huang, “Analytical analysis and oscillation control of payload twisting dynamics in a tower crane carrying a slender payload,” Mech Syst Signal Process, vol. 158, Sep. 2021, doi: 10.1016/j.ymssp.2021.107763
  10. T. Zhao et al., “Dynamic analysis and robust control of ship-mounted crane with multi-cable anti-swing system,” Ocean Engineering, vol. 291, Jan. 2024, doi: 10.1016/j.oceaneng.2023.116376

Last update:

No citation recorded.

Last update:

No citation recorded.