slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
ANALISIS STATIS DAN BEBAN AERODINAMIKA STRUKTUR FLAPPING WING MICRO AIR VEHICLE (FW-MAV) | Anwar | JURNAL TEKNIK MESIN skip to main content

ANALISIS STATIS DAN BEBAN AERODINAMIKA STRUKTUR FLAPPING WING MICRO AIR VEHICLE (FW-MAV)

*Miftahul Anwar  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Ismoyo Haryanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Achmad Widodo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Dalam dunia penerbangan di zaman modern ini, kendaraan udara berdimensi kecil sudah banyak dikembangkan salah satunya yaitu Flapping Wing Micro Air Vehicle (FW-MAV). Jenis kendaraan ini memiliki sayap yang mengepak saat terbang, sehingga analisis struktur dan aerodinamika sangat penting untuk dianalisis lebih lanjut untuk mendapatkan rancangan sayap yang lebih baik. Material dari sayap pada penelitian ini yaitu graphite-epoxy rods dan kapton film. Analisis dilakukan dengan menggunakan software Ansys Mechanical Worbench dan Ansys Fluent. Analisis struktural pada penelitian ini menggunakan pembebanan statik dimana beban didapat dari analisis Computational Fluid Dynamics (CFD) yaitu sebesar 0.07 Pa. Nilai total deformasi yang didapat yaitu maksimum di ujung sayap sebesar 36,165 mm dan minimum sebesar 0 mm disekitar rod penyangga sayap. Analisis aerodinamika dilakukan dengan variasi sudut serang 0⁰ sampai 6⁰, dimana didapat hasil berupa empat parameter Coefficient of Drag (), Coefficient of Lift (), drag dan lift. Hasil dari analisis aerodinamika menunjukkan bahwa semakin besar sudut serang yang diaplikasikan maka nilai dari , , drag dan lift juga akan semakin meningkat.
Fulltext View|Download
Keywords: drag; flapping wing; lift; statik
  1. M. Passaro and M. Lovera, “LPV model identification of a flapping wing MAV,” IFAC-PapersOnLine, vol. 54, no. 8, pp. 27–32, 2021, doi: 10.1016/j.ifacol.2021.08.576
  2. S. Deng, J. Wang, and H. Liu, “Experimental study of a bio-inspired flapping wing MAV by means of force and PIV measurements,” Aerosp. Sci. Technol., vol. 94, 2019, doi: 10.1016/j.ast.2019.105382
  3. S. H. Yoon, H. Cho, J. Lee, C. Kim, and S. J. Shin, “Effects of camber angle on aerodynamic performance of flapping-wing micro air vehicle,” J. Fluids Struct., vol. 97, 2020, doi: 10.1016/j.jfluidstructs.2020.103101
  4. S. Tiomkin and D. E. Raveh, “Progress in Aerospace Sciences A review of membrane-wing aeroelasticity,” Prog. Aerosp. Sci., vol. 126, no. May, p. 100738, 2021, [Online]. Available: https://doi.org/10.1016/j.paerosci.2021.100738
  5. O. Timofieieva, R. Świergosz-Kowalewska, R. Laskowski, and A. Vlaschenko, “Wing membrane and Fur as indicators of metal exposure and contamination of internal tissues in bats,” Environ. Pollut., vol. 276, 2021, doi: 10.1016/j.envpol.2021.116703
  6. A. Gehrke, J. Richeux, E. Uksul, and K. Mulleners, “Aeroelastic characterisation of a bio-inspired flapping membrane wing.,” Bioinspir. Biomim., vol. 17, no. 6, Sep. 2022, doi: 10.1088/1748-3190/ac8632
  7. M. N. M. Zaareer, A. H. I. Mourad, T. Darabseh, S. H. Khan, and M. Elgendi, “Impact of a vehicle exhaust pipe position on the lift and drag coefficients: 2D and 3D simulations,” Int. J. Thermofluids, vol. 18, no. March, p. 100321, 2023, doi: 10.1016/j.ijft.2023.100321
  8. T. Pore, S. G. Thorat, and A. A. Nema, “Review of contact modelling in nonlinear finite element analysis,” Mater. Today Proc., vol. 47, pp. 2436–2440, 2021, doi: 10.1016/j.matpr.2021.04.504
  9. B. Mebarki et al., “A CFD examination of free convective flow of a non-Newtonian viscoplastic fluid using ANSYS Fluent,” Arab. J. Chem., vol. 16, no. 12, p. 105309, 2023, doi: 10.1016/j.arabjc.2023.105309
  10. Y. You, S. Wang, W. Lv, Y. Chen, and U. Gross, “A CFD model of frost formation based on dynamic meshes technique via secondary development of ANSYS fluent,” Int. J. Heat Fluid Flow, vol. 89, no. November 2020, 2021, doi: 10.1016/j.ijheatfluidflow.2021.108807

Last update:

No citation recorded.

Last update:

No citation recorded.