skip to main content

STUDI UJI UNJUK KERJA ALAT PENGUJIAN VIBRATION TRAINING SYSTEMTM 150: EKSPERIMEN BANDUL DAN TWO MASS ABSORBER SYSTEM

*Muhammad Arif Rayhan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Ojo Kurdi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Djoeli Satrijo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Getaran disebabkan oleh berbagai macam hal yang berada di sekitar kita. Penguikuran serta analisis getaran dinilai sangat penting karena hal tersebut merupakan salah satu faktor utama dalam perancangan dan pengoptimalan kinerja sistem mekanik. Unit TM 150 digunakan untuk melakukan berbagai macam eksperimen fenomena getaran. Pada makalah ini dilakukan eksperimen bandul yang meliputi bandul sederhana, bandul fisik, bandul gabungan, bandul reversible dan bandul bifilar, serta eksperimen two mass absorber system. Penelitian ini mengevaluasi efektivitas setiap jenis eksperimen yang dilakukan pada alat uji terhadap perhitungan teoritisnya. Dari hasil perbandingan data eksperimen dengan perhitungan teoritis pada seluruh eksperimen bandul, ditemukan bahwa terdapat error pada jarak 0% hingga 8%, sehingga performa alat sangat baik dalam segi keakuratan data dan juga fenomena yang terjadi. Sedangkan pada eksperimen two mass absorber system tidak dapat membandingkan data hasil eksperimen dan teoritis karena keterbatasan alat, sehingga hanya dapat dibandingkan grafik fenomena resonansinya saja.

Fulltext View|Download
Keywords: absorber; bandul; flexible beam; getaran mekanis; resonansi; two mass absorber
  1. Jr. Robert F. Steidel, An Introduction to Mechanical Vibrations. 1991
  2. C. Feng and C. Pang, “Research on Vibration of Mechanical System Based on MATLAB,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2022. doi: 10.1088/1742-6596/2195/1/012050
  3. Rao S. S., Mechanical vibrations (5th ed.). Prentice Hall, 2011
  4. L. Yao, Y. Wang, Z. Zeng, and J. Kan, “Vibration analysis and optimization of a vertical disc stump grinder,” Advances in Mechanical Engineering, vol. 10, no. 2, Feb. 2018, doi: 10.1177/1687814018758577
  5. R. Markert and M. Seidler, “Analytically based estimation of the maximum amplitude during passage through resonance,” Int J Solids Struct, vol. 38, pp. 1975–1992, 2001, doi: https://doi.org/10.1016/S0020-7683(00)00147-5
  6. W. Shang and Q. Wang, “Design of a Submarine Vehicle for Higher Natural Frequency Using U - Index Theory Approach,” Shock and Vibration, vol. 2018, 2018, doi: 10.1155/2018/9496026
  7. Y. G. Z. Liu, C. Liu, Z. He and B. Li, “Analysis of Coupled Vibration and Swing Characteristics of Bridge Crane Analysis of Coupled Vibration and Swing Characteristics of Bridge Crane,” 2021, doi: 10.1088/1742-6596/2012/1/012016
  8. K. Bi and H. Hao, “Numerical simulation on the effectiveness of using viscoelastic materials to mitigate seismic induced vibrations of above-ground pipelines,” Eng Struct, vol. 123, pp. 1–14, 2016, doi: 10.1016/j.engstruct.2016.05.022
  9. V. Y. Myasnikov and I. I. Ivanov, “Method of engine structural frame vibrations analysis during fan blade-out,” IOP Conf Ser Mater Sci Eng, vol. 489, no. 1, 2019, doi: 10.1088/1757-899X/489/1/012040
  10. R. Abbate, M. Caterino, M. Fera, and F. Caputo, “Maintenance Digital Twin using vibration data,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 546–555. doi: 10.1016/j.procs.2022.01.252

Last update:

No citation recorded.

Last update:

No citation recorded.