skip to main content

STUDI NUMERIK PERPINDAHAN PANAS DAN TEGANGAN GESER DINDING UNTUK SILINDER TUNGGAL DENGAN ALIRAN CROSSFLOW PADA VARIASI BILANGAN REYNOLDS (Re) = 17.000, 51.000, 85.000, DAN 140.000

*Jeremy Sabam Chrisgar Siregar  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Berkah Fajar TK  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Khoiri Rozi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Penelitian ini mempelajari pengaruh Bilangan Reynolds terhadap pola dan karakteristik aliran, distribusi tegangan geser dinding dan perpindahan panas konveksi sepanjang permukaan silinder dengan memanfaatkan metode CFD (Computational Fluid Dynamics). Udara pada temperatur 20 °C diasumsikan sebagai fluida incompressible. Variasi Bilangan Reynolds yang digunakan meliputi Re = 17.000, 51.000, 85.000, dan 140.000. Pemodelan geometri silinder dilakukan pendekatan 2D dengan model turbulensi SST k-ꞷ. Distribusi kecepatan, tekanan statis, koefisien hidrodinamika, Bilangan Strouhal, tegangan geser dinding dan Bilangan Nusselt digunakan sebagai parameter pembanding. Hasil simulasi menunjukkan pada Re = 17.000, 51.000, dan 85.000 menghasilkan skema yang identik untuk setiap parameter pembanding, sedangkan Re = 140.000 menghasilkan nilai yang berbeda. Hal ini disebabkan oleh transisi rezim aliran, oleh sebab itu separasi aliran mengalami penundaan. Faktor-faktor yang mempengaruhi perbedaan nilai tersebut adalah distribusi kecepatan aliran, jarak aliran terhadap titik stagnasi, dan lapisan batas permukaan silinder.
Fulltext View|Download
Keywords: bilangan reynolds; cfd; perpindahan panas konveksi; silinder; tegangan geser dinding
  1. Kološ, I., Michalcová, V. And Lausová, L. (2021) ‘Numerical Analysis Of Flow Around A Cylinder In Critical And Subcritical Regime’, Sustainability (Switzerland), 13(4), Pp. 1–13.A
  2. Sonawane, C. Et Al. (2023) ‘Numerical Simulation Of Heat Transfer Characteristics Of Circular Cylinder Forced To Oscillate Elliptically In An Incompressible Fluid Flow’, Journal Of Thermal Analysis And Calorimetry, 148(7), Pp. 2719–2736
  3. Kurniawan, A. (2017). Studi Numerik 2-D Pengaruh Turbulensi Aliran Bebas (Free Stream Tubulence) Terhadap Perpindahan Panas Aliran Crossflow Silinder Sirkular Tunggal Dan Tandem. Prosiding SENIATI, 3(2), E5-1
  4. Sharma, V. And Dhiman, A.K. (2012) ‘Heat Transfer From A Rotating Circular Cylinder In The Steady Regime: Effects Of Prandtl Number’, Thermal Science, 16(1), Pp. 79–91
  5. Choi, H., Jeon, W.P., Kim, J., 2008. Control Of Flow Over A Bluff Body. Annu. Rev. Fluid Mech. 40, 113–139
  6. Lausová, L., Kološ, I. And Michalcová, V. (2019) ‘Comparison Of 2D Grid Simulations For Flow Past Cylinder At High Reynolds Numbers’, Civil And Environmental Engineering, 15(1), Pp. 70–78
  7. Beaudan, P. & Moin, P. (1994): Numerical Experiments On The Flow Past Circular Cylinders At Sub-Critical Reynolds Numbers. Report No. TF-62, Thermosciences Div., Dept. Of Mech. Engr., Stanford University
  8. Sarkar, S., Dalal, A. And Biswas, G. (2011) ‘Unsteady Wake Dynamics And Heat Transfer In Forced And Mixed Convection Past A Circular Cylinder In Cross Flow For High Prandtl Numbers’, International Journal Of Heat And Mass Transfer, 54(15–16), Pp. 3536–3551
  9. Ong, M.C. Et Al. (2009) ‘Numerical Simulation Of Flow Around A Smooth Circular Cylinder At Very High Reynolds Numbers’, Marine Structures, 22(2), Pp. 142–153
  10. Mohd Noor, N. (2015). Analysis Of Vortex Shedding In A Various Body Shapes (Doctoral Dissertation, Universiti Tun Hussein Onn Malaysia)
  11. Asyikin, M.T. (2012) ‘CFD Simulation Of Vortex Induced Vibration Of A Cylindrical Structure’, Norwegian University Of Science And Technology, (June), P. 83
  12. Blevins, R.D. (1977) ‘Blevins_Rd_1974.Pdf’, California Institute Of Technology
  13. Labraga, L., Bourabaa, N. And Berkah, T. (2002) ‘Wall Shear Stress From A Rotating Cylinder In Cross Flow Using The Electrochemical Technique’, Experiments In Fluids, 33(3), Pp. 488–496
  14. Sanitjai, S. And Goldstein, R.J. (2004) ‘Forced Convection Heat Transfer From A Circular Cylinder In Crossflow To Air And Liquids’, International Journal Of Heat And Mass Transfer, 47(22), Pp. 4795–4805

Last update:

No citation recorded.

Last update:

No citation recorded.