skip to main content

KARAKTERISTIK DAN PERFORMA CYCLONE SEPARATOR DENGAN PENAMBAHAN VORTEX FINDER (TAPPERED OUT – CYLINDER IN) DAN VARIASI PENDINGINAN PADA CONE CYCLONE DENGAN MENGGUNAKAN SIMULASI NUMERIK

*Eflita Yohana  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Bachtiar Kurnia Prakoso  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Kwang Hwan Choi  -  Sekolah Tinggi Teknik, Universitas Nasional Pukyong, 365 Sinseon-ro, Nam-gu, Busan, South Korea
Henry Charles  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Metode Computational Fluid Dynamic menjadi referensi yang banyak digunakan dalam pemecahan masalah karena murah dan lebih cepat. Penelitian ini mengkaji mengenai pengaruh inovasi geometeri vortex finder (Tapered Out-Cylinder In). Tiga variasi panjang vortex finder 20%, 30%, dan 40% akan disimulasikan pada kondisi pendinginan dan tanpa pendinginan tambahan terhadap medan aliran kecepatan, performa cyclone, distribusi temperatur, dan perpindahan panas. Model turbulensi RSM digunakan untuk mensimulasikan aliran fluida. Pendekatan Eularian-Langrangian dipilih untuk memprediksi pergerakan fasa partikel. Lintasan partikel dalam aliran dilacak secara individual menggunakan metode DPM. Model pendinginan diaplikasikan dengan asumsi temperatur konstan pada permukaan cone cyclone. Hasil simulasi menunjukan kesamaan tren baik dengan kajian ekperimen maupun simulasi numerik. Hasil yang signifikan dapat terlihat pada nilai penurunan tekanan turun hingga 12% dengan penerapan kondisi pendinginan. Efisiensi pengumpulan cyclone menunjukan peningkatan yang tidak signifikan namun sebagain besar partikel yang terkumpul lebih kering disebabkan adanya peningkatan perpindahan panas pada semua kasus variasi.
Fulltext View|Download
Keywords: cyclone separator, CFD, extra cooling, novelvortex finder
  1. Ali, A. M. (2018). Performance Investigation of A Mini Cyclone with Virtual Body. ULUDAĞ ÜNĠVERSĠTESĠ
  2. Anandharamakrishnan, C., & Ishwarya, P. S. (2015). Spray Drying Techniques for Food Ingredient Encapsulation. Publisher: Wiley-Blackwell
  3. Badan Pusat Statistik. (2020). Statistik Teh Indonesia 2020. Jakarta: BPS RI/BPS – Statistics Indonesia
  4. Bashir, K. (2015). Design and Fabrication of Cyclone Separator. Bs Chemical Technology
  5. Bernasconi, G., & dkk. (1995). Teknologi Kimia Bagian 2. Jakarta: PT. Pradnya Paramita
  6. Cengel, Y. A., & Cimbala, J. M. (2014). Fluid Mechanics. New York: McGraw-Hill
  7. Dewi, A. K., & Satibi, L. (2015). Kajian Pengaruh Temperatur Pengeringan Semprot (Spray Dryer) terhadap Waktu Pengeringan dan Rendemen Bubuk Santan Kelapa (Coconut Milk Powder). Konversi, Volume 4 No 1
  8. Elsayed, K. (2011). Board Size and Corporate Performance : The Missing Role of Board Leadership Structure. Journal of Management and Governance, 15, 415-446
  9. Ithape, P. K., Barve, S. B., & Nadgire, A. R. (2017). Effect of Geometric Parameters on the Performance of Cyclone Separator using CFD. International Journal of Current Engineering and Technology, JCET INPRESSO Special Issue-7 (March 2017)
  10. Leith, D., & Mehta, D. (1973). Cyclone Performance and Design. Atmospheric Environment Pergamon Press, Vol. 7, pp. 527-549
  11. M., W. &. (1988). Chemical Process Equipment. United States of America: Butter wo rth Publisher
  12. McGurk, K., Owen, B., & Watson, W. D. (2020). Heritability of Haemodynamics in the ascending aorta. Nature Portfolio, DOI: 10.1038/s41598-020-71354-7
  13. Moran, M. J., & Shapiro, H. N. (2006). Fundamentals of Engineering Thermodynamics 5th Edition. New York: John Wiley & Sons, Inc
  14. Moukalled, F., Mangani, L., & Darwish, M. (2016). The Finite Volume Method in Computational Fluid Dynamics. Fluid Mechanics and Its Applications
  15. Mujumdar, A. S. (2014). Handbook of Industrial Drying. Boca Raton: CRC Press
  16. Olson, R. M. (1990). Dasar-Dasar Mekanika Fluida Teknik (Edisi Kelima). Jakarta: Gramedia Pustaka Utama
  17. Parvaz, F., Hosseini, S., Elsayed, K., & Ahmadi, G. (2018). Numerical Inverstigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators. Separations and Purification Technology, 201, 223-237
  18. Peng, T., Zhang, X., Huang, Y., Zhao, Z., Liao, Q., Xu, J., . . . Wu, C. (2017). Nanoporous mannitol carrierprepared by non-organic solventspray drying technique to enhancethe aerosolization performance fordry powder inhalation. Scientific Reports, Doi: 10.1038/srep46517
  19. Perry, R. H., & Chilton, C. H. (1999). Chemical Engineer's Handbook 7th Edition. Tokyo: McGraw-Hill Kogakusha, Ltd
  20. Price, J. F. (2006). Langlarian and Eulerian Representations of Fluid Flow : Kinematics and the Equations of Motion. Woods Hole Oceanographic Institution
  21. Qiu, G., Henke, S., & Grabe, J. (2011). Application of a Coupled Eulerian-Langlarian approach on geomechanical problems involving large deformations. Computers and Geotechnics, 30-39
  22. Rodhes, M. (2008). Introduction to Particle Technology, 2nd Edition. Chichester, West Sussex, England: John Wiley & Son
  23. Samantha, S. C., Bruna, A. S., Adriana, R. M., Fabio, B., Sandro, A. R., & Aline, R. C. (2015). Drying by spray drying in the food industry: Microencapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462–470
  24. Schnelle, K. B., & Brown, C. A. (2002). Air Pollution Control Technology Handbook. United State of America: CRC Press LLC
  25. Siswoputranto, P. (1978). Perkembangan Teh, Kopi, dan Coklat Internasional. Jakarta: Gramedia
  26. Swain, P. C. (2016). Fluid Mechanics. Civil Engineering in B Tech
  27. Taiwo, M. I., Namadi, M. A., & Mokwa, J. B. (2016). Design and analysis of cyclone dust separator. American Journal of Engineering Research (AJER), Vol.5, Issue-4, pp. 130-134
  28. Theodore, L. (2008). Air Pollution Control Equipment. New Jersey, USA: John Wiley & Sons
  29. Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Harlow: Pearson Education Limited
  30. Walas, & Stanley, M. (1988). Chemical Process Equipment. United States of America: Butter wo rth Publisher
  31. Wang, J., Peng, F., Tu, Z., Zhang, D., Guo, J., & Huang, C. (2020). Brief Introduction of Dehumidification Technology and Research Progress. IOP Conf. Series: Earth and Environmental Science, 568
  32. Yohana, E., Tauviqirrahman, M., Laksono, D. A., Charles, H., Choi, K.-H., & Yulianto, M. E. (2022). Innovation of Vortex Finder Geometry (Tapered in cyclinder out) and Additional Cooling of Body Cyclone ond Velocity Flow Field, Performance, and Heat Transfer of Cyclone Separator. Powder Technology, 399
  33. Zhang, Z., & Chen, Q. (2007). Comparison of the Eulerian and Langlarian Methods for Predicting Particle Transport in enclosed spaces. Atmospheric Environment, 41 (25)

Last update:

No citation recorded.

Last update:

No citation recorded.