BibTex Citation Data :
@article{J.Gauss8585, author = {Nanci Rajagukguk and Dwi Ispriyanti and Yuciana Wilandari}, title = {PERBANDINGAN METODE KLASIFIKASI REGRESI LOGISTIK BINER DAN NAIVE BAYES PADA STATUS PENGGUNA KB DI KOTA TEGAL TAHUN 2014}, journal = {Jurnal Gaussian}, volume = {4}, number = {2}, year = {2015}, keywords = {Binary Logistic Regression, Naive Bayes, Keluarga Berencana, Classification.}, abstract = { Indonesia is a country that includes having the highest population density in the world.It is because the Indonesian state has a birth rate is so high. One of the efforts to control that population growth can be controlled by using the Keluraga Berencana program. In this study, the method used is the Binary Logistic Regression and Naive Bayes. To perform classification KB User Status in Tegal 2014, the variable used is the wife’s age, the age of first marriage, type of wife’s job, type of husband’s job, wife's education, husband's education, and number of children. The training data comparison testing is 70:30. Based on the research results using binary logistic regression showed that a significant predictor variables that affect the status of keluarga Berencana user are wife’s age, type of wife’s job, and number of children with a classification accuracy of testing data 83.33% .While with the Naive Bayes method obtained classification accuracy of 81.75%. From this analysis it can be concluded that the Binary Logistic Regression method is better than the Naive Bayes in classifying the status of KB users in Tegal 2014. Keywords : Binary Logistic Regression, Naive Bayes, Keluarga Berencana, Classification. }, issn = {2339-2541}, pages = {365--374} doi = {10.14710/j.gauss.4.2.365 - 374}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8585} }
Refworks Citation Data :
Indonesia is a country that includes having the highest population density in the world.It is because the Indonesian state has a birth rate is so high. One of the efforts to control that population growth can be controlled by using the Keluraga Berencana program. In this study, the method used is the Binary Logistic Regression and Naive Bayes. To perform classification KB User Status in Tegal 2014, the variable used is the wife’s age, the age of first marriage, type of wife’s job, type of husband’s job, wife's education, husband's education, and number of children. The training data comparison testing is 70:30. Based on the research results using binary logistic regression showed that a significant predictor variables that affect the status of keluarga Berencana user are wife’s age, type of wife’s job, and number of children with a classification accuracy of testing data 83.33% .While with the Naive Bayes method obtained classification accuracy of 81.75%. From this analysis it can be concluded that the Binary Logistic Regression method is better than the Naive Bayes in classifying the status of KB users in Tegal 2014.
Keywords : Binary Logistic Regression, Naive Bayes, Keluarga Berencana, Classification.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics