BibTex Citation Data :
@article{J.Gauss8577, author = {Laili Khiqmah and Moch. Mukid and Alan Prahutama}, title = {PERBANDINGAN DISKRIMINAN KUADRATIK KLASIK DAN DISKRIMINAN KUADRATIK ROBUST PADA KASUS PENGKLASIFIKASIAN PEMINATAN PESERTA DIDIK (Studi Kasus di SMA Negeri 1 Kendal Tahun Ajaran 2014/2015)}, journal = {Jurnal Gaussian}, volume = {4}, number = {2}, year = {2015}, keywords = {discriminant; outliers; robust; MCD estimators; classification}, abstract = { Discriminant is a multivariate statistical technique that can be used to perform the classification new observation into a particular group. Quadratic discriminant analysis tied to an assumption of normal multivariate distributed observations and variance covariance matrix inequality. Robust quadratic discriminant analysis can be used if the observations contain outliers. Classification using robust quadratic discriminant analysis with the Minimum Covariance Determinant (MCD) estimator in the data specialization students of SMA Negeri 1 Kendal that containing outliers gives the results of the classification accuracy of 95,06% with a percentage of 4,94% classification error while generating the classical quadratic discriminant analysis classification accuracy of 92,59% with a percentage of 7,41% classification error. Thus a robust quadratic discriminant analysis with the MCD estimator is more appropriate in the case of the data which contains outliers. Keywords : discriminant, outliers, robust, MCD estimators, classification}, issn = {2339-2541}, pages = {295--304} doi = {10.14710/j.gauss.4.2.295 - 304}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8577} }
Refworks Citation Data :
Discriminant is a multivariate statistical technique that can be used to perform the classification new observation into a particular group. Quadratic discriminant analysis tied to an assumption of normal multivariate distributed observations and variance covariance matrix inequality. Robust quadratic discriminant analysis can be used if the observations contain outliers. Classification using robust quadratic discriminant analysis with the Minimum Covariance Determinant (MCD) estimator in the data specialization students of SMA Negeri 1 Kendal that containing outliers gives the results of the classification accuracy of 95,06% with a percentage of 4,94% classification error while generating the classical quadratic discriminant analysis classification accuracy of 92,59% with a percentage of 7,41% classification error. Thus a robust quadratic discriminant analysis with the MCD estimator is more appropriate in the case of the data which contains outliers.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics