BibTex Citation Data :
@article{J.Gauss8151, author = {Seta Utama and Suparti Suparti and Rita Rahmawati}, title = {PEMODELAN TINGKAT PENGANGGURAN TERBUKA DI JAWA TENGAH MENGGUNAKAN REGRESI SPLINE}, journal = {Jurnal Gaussian}, volume = {4}, number = {1}, year = {2015}, keywords = {Rate of Open Unemployment, Spline Regression, GCV}, abstract = { Unemployment is one of the employment problems facing Indonesia. Central Java Province is one of the provinces with a high enough unemployment. The main indicators used to measure the unemployment rate in the labor force that is unemployed. Based on research Arianie (2012) labor force participation rate significantly affect the unemployment rate and based on research Sari (2012) the gross enrollment ratio significantly affects the rate of open unemployment. Therefore, in this study using the two predictor variables with the labor force participation rate as X 1 and gross enrollment rate as X 2 . This study aimed to explore the model of open unemployment rate in the Province of Central Java. The method used is the method of spline regression. Spline regression has the ability to adapt more effectively to the data patterns up or down dramatically with the help of dots knots. Determination of the optimal point knots are very influential in determining the best spline models. The best spline models are models that have a minimum GCV (Generalized Cross Validation) Value. Best spline models for the analysis of the data rate of unemployment in Central Java Province is the spline regression model when order X 1 is 2 and order X 2 is 4 and large number of knots in the X 1 is 1 knot at the point 68.02394 and X 2 is 3 knots at the point 82.13, 87.19, and 87.65 with GCV value of 1.732746. Keywords: Rate of Open Unemployment, Spline Regression, GCV }, issn = {2339-2541}, pages = {113--122} doi = {10.14710/j.gauss.4.1.113-122}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8151} }
Refworks Citation Data :
Unemployment is one of the employment problems facing Indonesia. Central Java Province is one of the provinces with a high enough unemployment. The main indicators used to measure the unemployment rate in the labor force that is unemployed. Based on research Arianie (2012) labor force participation rate significantly affect the unemployment rate and based on research Sari (2012) the gross enrollment ratio significantly affects the rate of open unemployment. Therefore, in this study using the two predictor variables with the labor force participation rate as X1 and gross enrollment rate as X2. This study aimed to explore the model of open unemployment rate in the Province of Central Java. The method used is the method of spline regression. Spline regression has the ability to adapt more effectively to the data patterns up or down dramatically with the help of dots knots. Determination of the optimal point knots are very influential in determining the best spline models. The best spline models are models that have a minimum GCV (Generalized Cross Validation) Value. Best spline models for the analysis of the data rate of unemployment in Central Java Province is the spline regression model when order X1 is 2 and order X2 is 4 and large number of knots in the X1 is 1 knot at the point 68.02394 and X2 is 3 knots at the point 82.13, 87.19, and 87.65 with GCV value of 1.732746.
Keywords: Rate of Open Unemployment, Spline Regression, GCV
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics