BibTex Citation Data :
@article{J.Gauss8072, author = {Dhinda Timur and Yuciana Wilandari and Diah Safitri}, title = {KETEPATAN KLASIFIKASI KEIKUTSERTAAN KELUARGA BERENCANA (KB) MENGGUNAKAN ANALISIS REGRESI LOGISTIK BINER DAN FUZZY K-NEAREST NEIGHBOR IN EVERY CLASS DI KABUPATEN KLATEN}, journal = {Jurnal Gaussian}, volume = {3}, number = {4}, year = {2014}, keywords = {}, abstract = { Fertility is one of the factors that affect population growth. High population growth resulted in the emergence of a variety of problems for a country including Indonesia. This requires a treatment that population growth can be controlled, one attempts to handle by using a Keluarga Berencana program. Therefore conducted a study to determine the factors that affect that participation of Keluarga Berencana (KB) by using Binary Logistic Regression analysis in which the participation of KB divided into two, namely join KB and KB did not participate. Based on the results obtained Binary logistic regression analysis predictor variables that significantly affect participation KB is the number of children, father's education, and mother's education. The resulting classification accuracy with training data comparison testing was 90:10 at 84.375%. Furthermore, the data were analyzed by using Fuzzy K-Nearest Neighbor in every Class (FK-NNC) to determine the accuracy of the classification results comparison with FK-NNC Binary Logistic Regression. From the analysis of the classification accuracy using the FK-NNC with a 90:10 ratio of training data and testing the value of K = 7 values obtained tersebesar ie 87.5%. The comparison of classification accuracy of this value indicates if the FK-NNC is better classify participation in Keluarga Berencana in Klaten district 2012. Keywords : Keluarga Berencana, Binary Logistic Regression, Fuzzy K-Nearest Neighbor in every Class (FK-NNC) }, issn = {2339-2541}, pages = {615--624} doi = {10.14710/j.gauss.3.4.615-624}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/8072} }
Refworks Citation Data :
Fertility is one of the factors that affect population growth. High population growth resulted in the emergence of a variety of problems for a country including Indonesia. This requires a treatment that population growth can be controlled, one attempts to handle by using a Keluarga Berencana program. Therefore conducted a study to determine the factors that affect that participation of Keluarga Berencana (KB) by using Binary Logistic Regression analysis in which the participation of KB divided into two, namely join KB and KB did not participate. Based on the results obtained Binary logistic regression analysis predictor variables that significantly affect participation KB is the number of children, father's education, and mother's education. The resulting classification accuracy with training data comparison testing was 90:10 at 84.375%. Furthermore, the data were analyzed by using Fuzzy K-Nearest Neighbor in every Class (FK-NNC) to determine the accuracy of the classification results comparison with FK-NNC Binary Logistic Regression. From the analysis of the classification accuracy using the FK-NNC with a 90:10 ratio of training data and testing the value of K = 7 values obtained tersebesar ie 87.5%. The comparison of classification accuracy of this value indicates if the FK-NNC is better classify participation in Keluarga Berencana in Klaten district 2012.
Keywords: Keluarga Berencana, Binary Logistic Regression, Fuzzy K-Nearest Neighbor in every Class (FK-NNC)
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics