skip to main content

KETEPATAN KLASIFIKASI KEIKUTSERTAAN KELUARGA BERENCANA (KB) MENGGUNAKAN ANALISIS REGRESI LOGISTIK BINER DAN FUZZY K-NEAREST NEIGHBOR IN EVERY CLASS DI KABUPATEN KLATEN


Citation Format:
Abstract

Fertility is one of the factors that affect population growth. High population growth resulted in the emergence of a variety of problems for a country including Indonesia. This requires a treatment that population growth can be controlled, one attempts to handle by using a Keluarga Berencana program. Therefore conducted a study to determine the factors that affect that participation of Keluarga Berencana (KB) by using Binary Logistic Regression analysis in which the participation of KB divided into two, namely join KB and KB did not participate. Based on the results obtained Binary logistic regression analysis predictor variables that significantly affect participation KB is the number of children, father's education, and mother's education. The resulting classification accuracy with training data comparison testing was 90:10 at 84.375%. Furthermore, the data were analyzed by using Fuzzy K-Nearest Neighbor in every Class (FK-NNC) to determine the accuracy of the classification results comparison with FK-NNC Binary Logistic Regression. From the analysis of the classification accuracy using the FK-NNC with a 90:10 ratio of training data and testing the value of K = 7 values obtained tersebesar ie 87.5%. The comparison of classification accuracy of this value indicates if the FK-NNC is better classify participation in Keluarga Berencana in Klaten district  2012.

 

Keywords: Keluarga Berencana, Binary Logistic Regression, Fuzzy K-Nearest Neighbor in every Class (FK-NNC)

Fulltext View|Download

Article Metrics:

Last update:

No citation recorded.

Last update:

No citation recorded.